
VeriRT: An End-to-End Verification Framework for Real-Time
Distributed Systems
YOONSEUNG KIM, Seoul National University, South Korea and Yale University, USA
SUNG-HWAN LEE∗, Seoul National University, South Korea
YONGHYUN KIM, Seoul National University, South Korea
CHUNG-KIL HUR, Seoul National University, South Korea

Safety-critical systems are often designed as real-time distributed systems. Despite the need for strong
guarantees of safety and reliability in these systems, applying formal verification methods to real-time
distributed systems at the implementation level has faced significant technical challenges.

In this paper, we present VeriRT, an end-to-end formal verification framework that closes the formal
gap between high-level abstract timed specifications and low-level implementations for real-time distributed
systems.Within the framework, we establish a theoretical foundation for constructing formal timed operational
semantics by integrating conventional operational semantics and low-level timing assumptions, along with
principles for reasoning about their timed behaviors against abstract specifications. We leverage CompCert’s
correctness proofs to guarantee the correctness of the assembly implementation of real-time distributed
systems. We provide two case studies on realistic real-time systems. All the results are formalized in Coq.

CCS Concepts: • Theory of computation→ Operational semantics; Program verification; Distributed
computing models; • Computer systems organization→ Real-time system specification.

Additional Key Words and Phrases: formal verification, real-time systems, distributed systems, refinement

ACM Reference Format:
Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur. 2025. VeriRT: An End-to-End Verification
Framework for Real-Time Distributed Systems. Proc. ACM Program. Lang. 9, POPL, Article 61 (January 2025),
28 pages. https://doi.org/10.1145/3704897

1 Introduction
Safety-critical systems, where ensuring safety and reliability is the top-priority task, are often
designed as real-time distributed systems. Examples include autonomous vehicle systems, avionics
systems, and nuclear systems [Chen et al. 2017; Gawand et al. 2017; Sampigethaya and Poovendran
2012], whose reliability critically depends on the prompt detection of environmental changes and
timely responses. Moreover, they fall under the category of cyber-physical systems, where many
of which adopt a distributed design to accommodate physical limitations [Khaitan and McCalley
2015; Shi et al. 2011].
However, applying formal verification methods directly to real-time distributed systems to

achieve a high level of reliability poses considerable technical challenges. Even the verification of
∗Now at Rebellions Inc.

Authors’ Contact Information: Yoonseung Kim, Seoul National University, Seoul, South Korea and Yale University, New
Haven, USA, yoonseung.kim@yale.edu; Sung-Hwan Lee, Seoul National University, Seoul, South Korea, sunghwan.lee@
sf.snu.ac.kr; Yonghyun Kim, Seoul National University, Seoul, South Korea, yonghyun.kim@sf.snu.ac.kr; Chung-Kil Hur,
Seoul National University, Seoul, South Korea, gil.hur@sf.snu.ac.kr.

© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/1-ART61
https://doi.org/10.1145/3704897

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-5294-1046
HTTPS://ORCID.ORG/0000-0003-0783-7033
HTTPS://ORCID.ORG/0009-0008-9834-5352
HTTPS://ORCID.ORG/0000-0002-1656-0913
https://doi.org/10.1145/3704897
https://orcid.org/0000-0001-5294-1046
https://orcid.org/0000-0003-0783-7033
https://orcid.org/0009-0008-9834-5352
https://orcid.org/0000-0002-1656-0913
https://doi.org/10.1145/3704897
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

61:2 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

non-real-time distributed systems [Drăgoi et al. 2016; Hawblitzel et al. 2015; Honoré et al. 2021;
Sergey et al. 2017; v. Gleissenthall et al. 2019; Wilcox et al. 2015] using conventional methods is
acknowledged to be challenging, as it involves proving system-wide invariants under arbitrary
interleavings of distributed nodes. Furthermore, verifying real-time systems necessitates quanti-
tative reasoning about the specific timings of observable events, a requirement not supported by
conventional methods that represent timing information for events in an abstract sequential order.

In our attempt to develop a new foundation for the real-time distributed system verification, we
have faced the following challenges:

Modeling Timed Behaviors. In traditional approaches that only consider sequences of events
without precise timing, the language semantics of a program (whether at the source, machine, or
specification level) fully determines the sequence of observable events. However, when timing is
introduced, defining program semantics that accurately predict the timing of each event becomes
challenging. This difficulty arises because while compilers are expected to maintain the order of
observable events from source to target code, they are not required to preserve exact timing. In fact,
compiler optimizations typically aim to reduce execution time, which inevitably alters the timing
of events. This discrepancy complicates the development of a semantic model that can reliably
predict the timing of events in optimized code.

Quantitative Reasoning about Timing. The correctness of real-time systems hinges on both
their computational behavior and timing characteristics, creating an intrinsic interdependence in
correctness reasoning. To illustrate this, consider a system that launches tasks at regular intervals
using a system call like sleep. A computational bug leading to an incorrect calculation of the
sleep duration could result in job launches deviating from the specified timing (i.e., a timing bug).
Conversely, a delayed job launch (i.e., a timing bug) might cause a message to be transmitted to
another node too late, potentially disrupting the entire system’s functionality (manifesting as a
computational bug). Thus, we require a well-crafted verification technique that enables quantitative
reasoning about both timing and computational behaviors in tandem.

Complexities Arising from Distributed Computation. Verifying distributed systems presents
additional challenges due to an inherently high degree of nondeterminism. Three main factors
contribute to this complexity: (𝑖) real-time interleaving of operations across physical nodes com-
prising the system, (𝑖𝑖) each node’s local clock exhibiting randomly varying skew, and (𝑖𝑖𝑖) message
exchanges between nodes subject to random delays, drops, or duplications. To ensure the overall
system’s correctness, we first need a distributed system model that conservatively captures all
possible behaviors arising from these sources of nondeterminism. Furthermore, we need reasoning
principles that allow us to effectively manage this complex nondeterminism across multiple nodes.

In this paper, we present VeriRT, a novel formal verification framework for real-time distributed
systems, addressing these challenges with the following features.

First, we develop a novel theory for modeling the timed behaviors of programs. In our approach,
we treat the timing of events differently from the ordering of events. While the ordering is deter-
mined by the semantics of a program at different levels, the timing is only determined by the actual
machine code running on hardware. Therefore, unlike the ordering of events, we allow users to
specify timing conditions for observable events generated by the actual machine code, which is set
out as a separate verification condition that should be externally validated via empirical methods or
worst-case execution time (WCET) analyses against the compiled machine code. Then, we reflect
these timing conditions in higher-level operational semantics in the form of timing assumptions.
For this, we develop the notion of timed operational semantics that combines conventional untimed

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:3

operational semantics with user-specified timing assumptions, generating observable behaviors in
the form of a sequence of timed events. It is important to note that imposing timing assumptions
in high-level operational semantics is necessary because computational behaviors can depend on
these timing assumptions, as discussed earlier.
Second, we develop proof techniques for reasoning about the timed behaviors of programs.

For this, we introduce timed simulation relations that enable timing-sensitive reasoning to prove
behavioral refinement between the timed behaviors of two programs. Moreover, we provide a
lifting theorem that allows for timing-insensitive reasoning: given a conventional simulation proof
between (untimed) behaviors of two programs, we can lift this simulation into a timed simulation
between their timed behaviors with the same timing assumptions. This timing-insensitive reasoning
is typically applied to compiler verification, in our work specifically for CompCert [Leroy 2009a], a
realistic C compiler formally verified in Coq.

Third, to address the challenge regarding distributedness, our framework supports specifying and
reasoning about the behavior of local clocks and the network. Specifically, our distributed system
model assumes a virtual global clock as a reference, allowing users to specify the behavior of local
clocks in relation to this global clock. In our case studies, we consider two different specifications
of local clock behavior. For the network, users can adjust a set of parameters to express various
assumptions regarding its behavior. The framework then provides node-local and global timed
simulations as proof techniques to resolve nondeterminism. Node-local simulation facilitates
abstraction of node-local timed behavior, including the local clock, while global simulation can be
applied to deal with interleavings and network behavior. It is important to note that the assumptions
about local clock and network behaviors form part of our trust base and are subject to external
validation.

This paper includes two case studies that demonstrate the application of VeriRT. In the first case
study, we implement and verify a well-known clock synchronization mechanism called Cristian’s
algorithm. We verify that the clock skews are bounded within the specified range under appropriate
assumptions about the local clock’s hardware behavior. The second case study presents a simplified
implementation of real-time system middleware called PALSware, which provides a logically
synchronous environment to applications built on top of a physically asynchronous network. We
verify the correctness of this PALSware implementation under appropriate assumptions about the
local clock and network behavior.

Additionally, we prove that the entire transformation chain of CompCert 3.9 preserves our timed
operational semantics from the C level down to the assembly level. We prove that the generic simula-
tion relation of CompCert also establishes refinement under our timed operational semantics, thanks
to the aforementioned lifting theorem. This extension of CompCert’s correctness proofs to our
timed semantics is packaged as CompCertRT within our framework. Consequently, CompCertRT
enables end-to-end verification from an abstract specification down to a final executable.

All results are formalized in Coq.
The remainder of the paper is organized as follows: §2 provides an overview of the theoretical

foundation of VeriRT and outlines the overall structure of the framework. §3 introduces our
formalism for representing real-time distributed systems, timed behaviors, and refinement. §4
offers a detailed explanation of the formal distributed system model, including our models for
the network and operating systems. §5 presents the proof techniques offered by VeriRT and the
rationale behind their designs. §6 describes the construction of CompCertRT, an integration of
CompCert within our framework. §7 and §8 present two case studies illustrating the practical
application of the framework. §9 evaluates our development. Finally, §10 concludes the paper by
comparing our work with existing studies.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:4 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

2 Overview
This section introduces the core concept underlying our theory for modeling and reasoning about
timed behaviors of programs. We illustrate this concept with an example program that operates un-
der real-time constraints. Next, we present the structure of VeriRT, a formal verification framework
for real-time distributed systems, built upon this theoretical foundation.

2.1 Modeling Timed Behaviors of Programs
Ordered Events vs. Timed Events. Program semantics define observable behaviors, each com-

prising events such as I/O operations with associated timings. Traditional approaches typically
represent these timings as a sequential order of events, without specifying exact times. However,
for real-time system verification, we cannot abstract away precise timings, as such verification
demands quantitative reasoning about when events occur.

Let’s first review traditional approaches to semantics with ordered events. In these approaches,
language semantics can be designed as an abstract state machine. This machine processes a given
program step by step, generating observable events in a sequential order. Here, a program serves
as a standalone representation for the operational semantics. Compilers can legitimately transform
these programs into various representations, provided they maintain the original order of events.

However, the traditional approaches face challenges when addressing timed operational seman-
tics — semantics that generate events with precise timing values. Consider, for example, designing
a standalone timed operational semantics for C (such as assigning an execution time bound for
each command). In this scenario, ensuring compiler correctness would require preserving not only
the order of events but also their precise timings. This approach presents technical difficulties in
compiler development and doesn’t align with how realistic compilers function. Compilers typically
aim to reduce execution time or, in some cases, extend it for specific purposes (e.g., security or file
size optimization). It’s widely recognized that source programs are only loosely connected to actual
execution time (e.g., time complexity). Consequently, the verification of precise time constraints
must occur at the machine level, involving compiled executables and the target machine.

Our Approach to Modeling Timing. To construct a timed operational semantics, our method
requires the user to provide timing assumptions for a program. These assumptions consist of time
constraints regarding the interactions between the program and its environment (i.e., invocations
and returns of system calls). We then form a timed operational semantics by integrating these
timing assumptions with the existing (untimed) operational semantics.

Fig. 1 illustrates an example program with its abstract specification. The system’s primary task is
to send a message periodically at a specified time. Each iteration involves two steps: first, computing
a message (a process that may consume time), and then initiating message transmission within the
time interval (𝑘𝑇 − 𝐷,𝑘𝑇). Here, 𝑇 represents a particular period, 𝐷 (< 𝑇) is a given constant, and
𝑘 is any integer. Such constraints are typical in time-division multiplexing where communication
channels are allocated specific time slots.
Fig. 1a presents the abstract specification of this process as a timed automaton [Alur and Dill

1994]. Each edge is labeled with a triple (𝑒,𝐶,𝑈) where 𝑒 is an observable event,𝐶 is a condition for
the transition to occur, and𝑈 is an operation that updates the clock variables after the transition.
The process begins at 𝑠0 and may transition to 𝑠1 at any moment, resetting a clock 𝑥 . While at 𝑠1,
the system may emit an event send_ev(𝑚) when the clock 𝑥 is within a specified time interval. For
simplicity, the specification disregards the message content. After sending a message, the system
can return to 𝑠1, resetting 𝑥 to 0 when its value becomes a multiple of𝑇 , ensuring the next iteration
follows the correct periodic schedule. The automaton accepts any observable behavior generated
by an infinite transition sequence that indefinitely visits 𝑠1 (a Büchi condition).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:5

𝑠0start 𝑠1 𝑠2
(𝜏,𝑇𝑟𝑢𝑒, 𝑥 := 0)

(send_ev(𝑚), ∃𝑘.𝑘𝑇 − 𝐷 < 𝑥 < 𝑘𝑇, skip)

(𝜏, ∃𝑘.𝑥 = 𝑘𝑇, 𝑥 := 0)
(𝑥 : a clock variable)

(a) Automata specification

1 void main_loop() {
2 while (true) {
3 Msg m = compute_msg();
4
5 Int t_cur = get_time(); /** (a1,r1,s1,e1) |= [SC: 0<=e1-s1<Egt /\ s1<=r1<=e1] [WCET: s2-e1<E1] */
6 Int t_send = ((t_cur / T) + 1) * T - E;
7 if (t_send < t_cur)
8 t_send += T;
9
10 Int t_sleep = t_send - t_cur;
11 sleep(t_sleep); /** (a2,r2,s2,e2) |= [SC: a2<=e2-s2<a2+Esleep] [WCET: s3-e2<E2] */
12
13 send(m); /** (a3,r3,s3,e3) |= [SC: 0<=e3-s3<Esend] [WCET: True] */
14 }
15 }

(b) C implementation
Fig. 1. Specification and implementation of a periodic process

Fig. 1b presents a C function main_loop that implements the process. Let’s first examine the
code, disregarding comments. The function enters a loop and begins by computing a message via
compute_msg (whose detailed behavior is not relevant for this example). It then obtains the current
local clock value t_cur from the system call get_time. Next, it calculates 𝑘 = ((t_cur / T) + 1)
and computes t_send = 𝑘𝑇 − 𝐸 (to be explained later) as the initial candidate time to start sending
the message. If 𝑘𝑇 occurs too soon, rendering t_send earlier than t_cur, the function may need
to wait another period 𝑇 . It then calls the system call sleep to pause execution until t_send, and
finally sends the message through send(m). We consider the event send_ev(𝑚) to occur between
the invocation and return of send(m).
Now, we explain how we define the timing assumptions. We use annotations of the form

(a,r,s,e) |= [SC: C1] [WCET: C2] to clearly present time constraints associated with a
system call. The variables (a,r,s,e) denote the argument, return value, start time, and end time
of the associated system call for each invocation, respectively. Users can provide two types of
constraints: the SC constraint imposed on the system call itself, and the WCET constraint on the
code between system calls. In the WCET constraint, users may reference variables declared in
constraints of other system calls. Importantly, these constraints are expressed relative to the local
clock. Here, we assume a value 𝜀 as the maximum clock skew between the local and global clocks1.

In this example, we have three sets of constraints associated with get_time, sleep, and send. For
get_time, the SC constraint specifies that the system call’s execution time is bounded by Egt, and
the return value must fall between the start and end times. The WCET constraint requires that the
subsequent sleep system call invocation occurs within E1 time after get_time returns. This means
that the intermediate steps, including t_send and t_sleep computations, must complete within E1.
For sleep, the SC constraint mandates that the blocking time is at least the given argument, with
the call returning within Esleep. Its WCET constraint limits the time between sleep and send
(involving no C commands in the source code) to at most E2. Lastly, the SC constraint for send
1VeriRT may support different forms of assumptions on the local clock, as we explain in the case studies.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:6 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

(Latency)

𝑡 < 𝑡𝑜 0 < 𝑙𝑎𝑡 𝑙𝑎𝑡 ′ = 𝑙𝑎𝑡 − 1

(𝑡, 𝑡𝑟, 𝑙𝑎𝑡, 𝑡𝑜, 𝑠) (𝑡,𝜏)−−−→ (𝑡 + 1, 𝑡𝑟, 𝑙𝑎𝑡 ′, 𝑡𝑜, 𝑠)

(Progress)
𝑠 𝑒−→+𝑠′ 𝑡𝑟 ′ = app_last(𝑡𝑟, 𝑡, 𝑒)
𝑡 < 𝑡𝑜 𝑡𝑜′ = T(𝑡𝑟, 𝑡, 𝑒, 𝑡𝑜)

(𝑡, 𝑡𝑟, 0, 𝑡𝑜, 𝑠) (𝑡,𝑒)−−−→ (𝑡 + 1, 𝑡𝑟 ′, 𝑙𝑎𝑡 ′, 𝑡𝑜′, 𝑠′)

(TimeViolation)

𝑡𝑜 ≤ 𝑡

(𝑡, 𝑡𝑟, 𝑙𝑎𝑡, 𝑡𝑜, 𝑠) (𝑡,NB)−−−−→ ∗

Fig. 2. Timed transition rules

specifies a maximum execution time of Esend. We do not impose any WCET condition between
send and the subsequent get_time.

Construction of Timed Operational Semantics. We now present the generic construction of
timed operational semantics shown in Fig. 2, explaining it in two steps.
First, our approach transforms each transition 𝑠

𝑒−→ 𝑠′ from the underlying untimed semantics
into a timed transition (𝑡, 𝑠) (𝑡,𝑒)−−−→ (𝑡 ′, 𝑠′), generating a timed event at time 𝑡 and accounting for time
passage until the next transition at 𝑡 ′ ≥ 𝑡 . In this framework, we discretize time into extremely small
units (e.g., 10−15 seconds), parameterized in our formalization, allowing us to model a transition
step for each time unit. We introduce a latency state 𝑙𝑎𝑡 to represent the physical time required
before the next transition occurs. Two key rules govern this process: the Latency rule, which
decreases 𝑙𝑎𝑡 by one per step, generating a silent event 𝜏 ; and the Progress rule, which captures
the state transition when 𝑙𝑎𝑡 reaches zero, represented as 𝑠 𝑒−→+𝑠′. After a Progress step, a new
latency 𝑙𝑎𝑡 ′ is nondeterministically assigned. Importantly, 𝑠 𝑒−→+𝑠′ allows for multiple silent steps to
occur along with a single, possibly non-silent event 𝑒 , a feature particularly useful for maintaining
conciseness in our theory (see §4.2 for more details).

Second, to eliminate executions that violate the timing assumptions, we augment the state with
two elements: an event trace 𝑡𝑟 and a timeout point 𝑡𝑜 . Initially, 𝑡𝑜 is set to∞. As events occur, the
T function, which encodes the timing assumptions, may update the timeout point. For instance, if
𝑡𝑟 and the current event 𝑒 indicate a return from get_time() at Line 5 of our example program,
𝑡𝑜 ′ is updated to 𝑡 + E1. The system can take arbitrary timed steps following the Latency and
Progress rules until 𝑡 reaches 𝑡𝑜 . If 𝑡 does reach 𝑡𝑜 , the program generates a special no-behavior
event, marking the execution as "invalid" (this is the TimeViolation rule). As an example, if the
execution time exceeds E1 after returning from get_time without reaching sleep, the semantics
generates a no-behavior event. When defining the system’s observable behaviors, we discard these
invalid executions. This approach assumes that the timing assumptions will be validated against
the final executable (see §3 for details). For simplicity in this explanation, we have not distinguished
between local and global clocks. This distinction will be addressed in detail in §4.

2.2 Reasoning about Timed Behaviors

Fig. 3. Verification layers of a single program

For a single program, the end-to-end verification from
an abstract specification to the machine-level timed
behavior comprises three layers, as illustrated in Fig. 3:
• Refinement proof: This layer establishes the relation-
ship between the C implementation (including OS
interactions) and the abstract specification.
• Compiler correctness: This layer ensures that the
compiled code preserves the timed operational se-
mantics of the source program.
• Timing assumption validation: This layer confirms that the user-defined timing assumptions are
satisfied by the actual machine-level execution.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:7

Of the three layers, the framework directly provides the middle one concerning compiler cor-
rectness. A key theorem of VeriRT guarantees that when CompCert compiles a C program to an
assembly program, the C program with its timing assumptions is refined by the resulting assembly
program with the identical timing assumptions. The timing assumptions are designed to be inde-
pendent of the underlying untimed operational semantics. This independence allows us to reuse
CompCert’s existing per-pass simulation proofs by applying our lifting theorem. We will present
the details of this lifting theorem in §5 and our work on applying it to CompCert 3.9 in §6.

The user’s responsibility for reasoning about timed behaviors is divided into two distinct tasks,
represented by the top and bottom layers respectively. We will illustrate each of these tasks using
the example provided in Fig. 1 in the following paragraphs.

Refinement between Specification and Implementation. The verification process linking
the abstract specification to the C implementation necessitates combined reasoning about both
the code’s computational behaviors and the timing assumptions. Consider a scenario where the
developer inadvertently introduces an error in Fig. 1b, causing the computation of t_sleep to
result in either an excessively short or long sleep duration. In a traditional approach using ordered
events to represent timings, such a mistake would go undetected during verification, as it wouldn’t
alter the event sequence. In contrast, our approach allows for the explicit expression of timings in
the specification, enabling proper verification of real-time systems.

We now present the high-level reasoning for verifying our example. Our goal is to demonstrate
that the implementation meets the timed automata specification (Fig. 1a), which defines the safe
time range as ∃𝑘.(𝑘𝑇 − 𝐷,𝑘𝑇). Specifically, we need to prove that every occurrence of s3 and e3
falls within this range for some 𝑘 . To establish this, we begin by assuming the following condition
on E: Egt+E1+Esleep+E2+Esend+𝜀 < E < 𝐷−𝜀 This condition forms the basis of our refinement
proof. It’s important to note that during the verification process, we must prove this condition
holds for the concrete values of all constants involved. Our reasoning process integrates three key
elements: the code itself, the timing assumptions, and the clock skew of the local clock. 2

To begin, we will establish a lower bound for the variable s3 within a single iteration of the main
loop. By reasoning about the computational behaviors, we can obtain that t_cur < t_send and
t_send = 𝑘𝑇 − E for some 𝑘 . Then, we get a lower bound from the following steps:

s3 ≥ e2 ≥ a2 + s2 = (𝑘𝑇 − E) − t_cur + s2 (from execution order, SC of sleep, and code)
≥ (𝑘𝑇 − E) − e1 + s2 ≥ 𝑘𝑇 − E (from SC of get_time and execution order)

Then, considering the maximum skew 𝜀, the earliest possible invocation of send in terms of the
global clock must be at least 𝑘𝑇 − E − 𝜀 > 𝑘𝑇 − 𝐷 .

Second, we obtain an upper bound of e3 for the same iteration as follows:

e3 < s3 + Esend < e2 + E2 + Esend (from SC of send and WCET of sleep)
< E2 + Esend + s2 + a2 + Esleep (from SC of sleep)

s2 + a2 < E1 + e1 + (t_send − t_cur) (from WCET of get_time and code)
< E1 + Egt + s1 + ((𝑘𝑇 − 𝐸) − r1) (from SC of get_time)
≤ E1 + Egt + s1 + ((𝑘𝑇 − 𝐸) − s1) (from SC of get_time)
= E1 + Egt + (𝑘𝑇 − 𝐸)

Again, considering 𝜀, the latest possible return time of send is at most e3+ 𝜀 < Egt+ E1+ Esleep+
E2 + Esend + (𝑘𝑇 − 𝐸) + 𝜀 < 𝑘𝑇 . Hence the program with the timing assumptions refines the
automata specification.
2For distributed systems, we would also need to account for message delivery times.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:8 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

Validation of Timing Assumptions. Timing assumptions should be validated against the
compiled executable on the target hardware with respect to its local clock. This validation ensures
that the timed behaviors of the assembly code, as defined by our timed operational semantics,
encompass all possible physical behaviors. It’s important to note that this validation process is
conducted outside our framework, as it relies on hardware-specific factors not modeled within our
system. Users have flexibility in choosing validation methods based on their required confidence
level. Options include rigorous testing or the use of Worst-Case Execution Time (WCET) analysis
tools. Some compositional WCET analyses [Leveque et al. 2011; Marref 2010; Maxim et al. 2017]
may be particularly helpful, allowing users to validate constraints on system calls and user-written
code separately, then combine these results.

2.3 Structure of the Framework

Fig. 4. Structure of the framework

Building upon the theoretical foundation we
have discussed, VeriRT enables the establish-
ment of end-to-end refinement at the distributed
system level, as illustrated in Fig. 4. The frame-
work’s most distinctive feature is its ability to
divide the end-to-end verification process into
multiple layers. This layered approach signifi-
cantly simplifies the overall proof by allowing
users to focus on reasoning about individual, lo-
cal components within each layer. This modular
verification strategy enhances both the manage-
ability and scalability of the verification process
for complex systems.

The verification process begins with the user
constructing a formal model of the distributed
system. This is achieved by writing programs
in C language, which are represented as white
dashed boxes in Fig. 4. Our framework then in-
tegrates these user-provided programs with its
pre-built network and operating system models.
This integration results in a comprehensive system that serves as the target for verification.

After constructing the formal model, the user proceeds with verification by building a series of
refinement proofs. To facilitate this process, the user can define local specifications for individual
system components, serving as intermediate steps in the verification. Our framework supports this
approach by offering several simulation techniques that enable localized reasoning. In Fig. 4, we
use gray shading to represent all specifications, illustrating the gradual abstraction process within
our framework. The verification culminates in an end-to-end refinement, resulting from a vertical
composition of the individual refinement proofs.

Network and OS Models. The network and OS models are designed to represent all possible
behaviors of their real-world counterparts. For the networkmodel, the usermay control its behaviors
by setting the model parameters 𝜇 and 𝜅 , each denotes the maximum delivery time assumption and
the maximum number of possible message duplication, respectively. The OS model contains the
modeled behaviors of selected system calls, about local clock accesses, timers, and network sockets.
The user may control the local clock’s behavior by imposing a rule (e.g., imposing the maximum
clock skew bound). We will explain the two models in detail in §4.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:9

Refinement Layers. The end-to-end verification shown in Fig. 4 is a composition of four re-
finement layers of proof. The framework provides three simulation relations as proof techniques:
program-local, node-local, and global simulations. Global simulation is the most general one, and
the other two are for reasoning about local components, which imply contextual refinement for
the whole system. We will explain the proof techniques in §5. We summarize each layer along the
bottom-up direction as follows.

• Program Simulation by CompCertRT: For any C programs given by the user, CompCertRT
guarantees the program-local simulation between the C programs and their corresponding
assembly programs compiled by itself. Program-local simulation is used to match the computa-
tional behavior of two programs. CompCertRT contains a generic proof that every translation of
CompCert 3.9 satisfies program-local simulation, whose details will be presented in §6.

• Program Simulation by User: In this layer, the user provides a computational specification for
each C program and proves program-local simulation to abstract away concrete details of the
formal C operational semantics. The removal of the complex details helps the user to focus on
reasoning about times in the above layers.

• Node-Local Simulation by User: This layer performs abstraction at the node layer, i.e., showing
that the user programs with the OS model together behave as a more abstract timed model (e.g.,
Fig. 1a). Thus we use node-local simulation, which requires reasoning about timings.

• Global Simulation by User: Finally, the user may combine all node models and the network
model to obtain the refinement until a global-level specification. This layer requires global
reasoning, and we can use global simulation to match two distributed system models.

3 Timed Behaviors of Real-Time Distributed Systems
In our formalization, we represent a distributed system as a transition system generating timed
events (i.e., events paired with timestamps) from each node. To address special situations triggering
errors or violating timing constraints, we introduce the notions of undefined behavior (UB) and
no-behavior (NB) events. Observable behaviors of a system are defined as infinite traces formed by
transitions. Then, the refinement relation is straightforwardly defined as a subset relation of timed
behaviors between two systems. We also explain how the framework supports imposing different
assumptions using the event classification mechanism. For precise type definitions in this section,
we direct readers to [Kim et al. 2024].

3.1 Distributed System Model
We represent a distributed system as a transition system of a triple (Σ,→, 𝐼): a set of states Σ,
a transition relation →, and initial states 𝐼 ⊆ Σ. A transition 𝜎

®𝑡𝑟−→ 𝜎 ′ generates a distributed
trace ®𝑡𝑟 , in which the 𝑖’th node-local trace ®𝑡𝑟 [𝑖] = [(𝑡1, 𝑒1), ..., (𝑡𝑘 , 𝑒𝑘)] contains events paired with
timestamps that precisely denote timings. Additionally, we only consider the case 𝐼 ≠ ∅.
We represent an event as a pair ⟨𝑒𝑐, 𝑟 ⟩ ∈ Event of an event request and a return value. 3 For

example, ⟨read_int(4), 10⟩ may denote an event where a program requests a 4-byte integer input
and receives 10 as the return value. When events are generated from a sub-component of the model,
some of them are processed by other components, while others are considered visible, and included
in the distributed trace ®𝑡𝑟 of the transition.

3In §2, we treated event requests and returns as separate events, since from the programs’ perspective they occur separately
in terms of timings.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:10 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

Undefined Behavior vs. No-Behavior. Some of the visible events are designated to indicate
special situations that trigger undefined behavior (UB) and no-behavior (NB) in our model by
the event classification function C : Event→ {UB, NB, Obs} parametrized in the model, where Obs
corresponds to ordinary events that form observable behaviors.
First, undefined behavior is a widely used concept that captures unexpected results that may

arise from abnormal operations, e.g., accessing an unallocated memory region. Therefore, it is often
formally interpreted as a set of all behaviors, so that any observable behavior refines undefined
behavior. It is the programmer’s responsibility to avoid generating undefined behaviors in their
programs. In our model, we trigger undefined behavior when the system is stuck (i.e., cannot take
the next step) or explicitly generates UB events.

In contrast, as a dual concept of undefined behavior, no-behavior captures improbable executions,
i.e., executions that violate axiomatized assumptions. NB can be interpreted as an empty set of
behaviors, and thus it refines arbitrary observable behaviors. Programmers can rely on the absence
of no-behavior events in reasoning about their programs, e.g., considering highly-reliable time
constraints as true, since no-behavior events would not happen as long as the constraints hold.

3.2 Timed Observable Behaviors and Refinement
For a system state 𝜎 ∈ Σ, we define the set of timed observable behaviors Beh(𝜎) by collecting
observable traces formed by infinite transition sequences starting from 𝜎 . Instead of revealing its
coinductive definition, we state a property equivalent to the definition:

−−→
𝑏𝑒ℎ ∈ Beh(𝜎) ⇔ err(𝜎) ∨ (∃𝜎 ′,−−→𝑏𝑒ℎ′, ®𝑡𝑟 . 𝜎 ®𝑡𝑟−→ 𝜎 ′ ∧ AllObsC (®𝑡𝑟)∧

concats(®𝑡𝑟,−−→𝑏𝑒ℎ′) = −−→𝑏𝑒ℎ ∧ −−→𝑏𝑒ℎ′ ∈ Beh(𝜎 ′)) (1)

inwhich err is a predicate for erroneous states (i.e., a state generating UB or a “stuck” state lacking any
possible next step, which has the same effect as UB) whose behaviors are unpredictable, AllObsC is a
predicate that holds if every event is classified as Obs by C, and concats is a pointwise concatenation
of traces and behaviors. Intuitively, 𝜎 generates a behavior

−−→
𝑏𝑒ℎ if (𝑖) 𝜎 is unsafe or (𝑖𝑖) it can make

a valid transition whose trace can form
−−→
𝑏𝑒ℎ with one behavior of the subsequent state. From this,

we define the system’s behaviors Beh((Σ,→, 𝐼)) as ⋃𝜎∈𝐼 Beh(𝜎).
Then, we can define the refinement relation of two systems as the subset relation regarding the

timed observable behaviors:

Definition 3.1 (Timed Behavioral Refinement). For two distributed systems 𝑠𝑦𝑠conc, 𝑠𝑦𝑠abs and
under an event classifcation function C, 𝑠𝑦𝑠conc refines 𝑠𝑦𝑠abs if Beh(𝑠𝑦𝑠conc) ⊆ Beh(𝑠𝑦𝑠abs).

Embedding Relation of Event Classification Functions. The event classification C can have
multiple instantiations, each imposing different assumptions on the system. For example, our
network model generates an event late_delivery(𝑚) when it fails to deliver a message𝑚 within
the parameter value 𝜇. Users may instantiate C to classify the late delivery events as either Obs or
NB. In the former, late deliveries are permitted as valid behaviors (still identifiable by the events),
where the latter disallows late deliveries.

To utilize such usages regarding event classification, we define an embedding relation within
them. Intuitively, the one that classifies more events as Obs permits more behaviors than the one
that classifies those events as NB.

Definition 3.2 (Embedding of Event Classifications). For two event classification functions C1 and
C2, C1 ←↪ C2 if ∀𝑒, C1 (𝑒) = C2 (𝑒) ∨ (C1 (𝑒) = Obs ∧ C2 (𝑒) = NB).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:11

Consequently, with a single refinement proof, users can obtain multiple verification results
under different assumptions simply by substituting C. Intuitively, if a system refines a specification
under a “permissive” assumption (e.g., allowing late deliveries) then the system still refines the
specification under a stricter assumption (e.g., disallowing late deliveries). We show in §8 how to
utilize this feature in practice. We present a theorem below that clarifies the implication of the
embedding in refinement proofs.

Theorem 3.3 (Refinement Preserved by Embedding). For any C1 ←↪ C2 and 𝑠𝑦𝑠conc, 𝑠𝑦𝑠abs,
Beh(𝑠𝑦𝑠conc) ⊆ Beh(𝑠𝑦𝑠abs) under C1 implies Beh(𝑠𝑦𝑠conc) ⊆ Beh(𝑠𝑦𝑠abs) under C2.

4 Concrete Formal Distributed System Model
In this section, we explain how we construct a “concrete” distributed system model that consists of
the OS model, the user program for each node, and the network model. Here, we focus on how we
handle the asynchrony in timings between nodes. The full details are available in [Kim et al. 2024].

4.1 OS Model
The OS model aims to capture the nondeterminism arising from the behavior of local clocks and
asynchronous message communication. It takes as input a set of user-defined parameters that
reflect the system’s assumptions about local clock skew. The model then defines the semantics
for a suite of system calls related to clock access and network communication, which a real-time
operating system is expected to support.

Local Clock Parameters. In the local clock parameters, users define the type of abstract clock
states and specify functions and predicates describing local clock behavior in four cases:
• LCInit(𝑡, 𝑙𝑐): A predicate specifying an initial clock state 𝑙𝑐 when the global time is 𝑡 .
• LCVal(𝑙𝑐): A function retrieving the local time value from the current state.
• LCAdv(𝑡, 𝑙𝑐, 𝑙𝑐′): A predicate for a clock state transition from 𝑡 to 𝑡 + 1
• LCSet(𝑡, 𝑙𝑐, 𝑙𝑡): A function updating the clock state at 𝑡 when the user program requests to
set the local clock value to 𝑙𝑡 .

We present two instantiations of the parameters, which are used in the case studies in §7 and §8:
(1) Hardware clock rate assumption: This assumes a constraint on the physical clock hardware,

limiting the ratio of global time to local time difference between two points (𝑡, 𝑙𝑡) and (𝑡 ′, 𝑙𝑡 ′)
by 𝜌 ∈ [0, 1), such that: 1 − 𝜌 < (𝑙𝑡 ′ − 𝑙𝑡)/(𝑡 ′ − 𝑡) < 1 + 𝜌 .
We define corresponding local clock parameters as follows:
• Clock state: 𝑙𝑐 = (𝑡, 𝑙𝑡, 𝑝) contains the global and local times at which the local clock is last
set, and the “perceived” amount of time 𝑝 ∈ R since then.
• LCInit(𝑡, 𝑙𝑐) def= ∃𝑙𝑡 . 𝑙𝑐 = (𝑡, 𝑙𝑡, 0)
• LCVal(𝑙𝑐) def= let 𝑙𝑐 = (_, 𝑙𝑡, 𝑝) in 𝑙𝑡 + ⌊𝑝⌋
• LCAdv(𝑡, 𝑙𝑐, 𝑙𝑐′) def= ∃𝑡, 𝑙𝑡, 𝑝, 𝑝inc . 1 − 𝜌 < 𝑝inc < 1 + 𝜌 ∧ 𝑙𝑐 = (𝑡, 𝑙𝑡, 𝑝) ∧ 𝑙𝑐′ = (𝑡, 𝑙𝑡, 𝑝 + 𝑝inc)
• LCSet(𝑡, 𝑙𝑐, 𝑙𝑡) def= (𝑡, 𝑙𝑡, 0)

(2) Clock synchronization assumption: This assumption relies on the presence of a synchroniza-
tion algorithm running in the background. It limits the absolute difference between global
and local times by 𝜀 > 0 at every point: |𝑡 − 𝑙𝑡 | < 𝜀.
The local clock parameters are defined as:
• Clock state: 𝑙𝑐 = 𝑙𝑡 , representing the current local time.
• LCInit(𝑡, 𝑙𝑡) def= |𝑡 − 𝑙𝑡 | < 𝜀

• LCVal(𝑙𝑡) def= 𝑙𝑡

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:12 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

OSInit(𝑡, (𝑙𝑐, 𝑠𝑘𝑡𝑠, 𝑠𝑡𝑠)) def= LCInit(𝑡, 𝑙𝑐) ∧ 𝑠𝑘𝑡𝑠 = [] ∧ 𝑠𝑡𝑠 = Idle

OSLCAdv(𝑡, (𝑙𝑐, 𝑠𝑘𝑡𝑠, 𝑠𝑡𝑠), (𝑙𝑐′, 𝑠𝑘𝑡𝑠′, 𝑠𝑡𝑠′)) def= LCAdv(𝑡, 𝑙𝑐, 𝑙𝑐′) ∧ 𝑠𝑘𝑡𝑠 = 𝑠𝑘𝑡𝑠′ ∧ 𝑠𝑡𝑠 = 𝑠𝑡𝑠′

OSAccept((𝑙𝑐, 𝑠𝑘𝑡𝑠, 𝑠𝑡𝑠),𝑚𝑠 in)
def
= (𝑙𝑐, accept_skts(𝑠𝑘𝑡𝑠,𝑚𝑠 in), 𝑠𝑡𝑠)

OSCall((𝑙𝑐, 𝑠𝑘𝑡𝑠, 𝑠𝑡𝑠), 𝑓 (𝑣1, .., 𝑣𝑛))
def
= match 𝑠𝑡𝑠 with Idle⇒ Some(𝑙𝑐, 𝑠𝑘𝑡𝑠, Proc(𝑓 (𝑣1, .., 𝑣𝑛))) | _⇒ None end

OSRet((𝑙𝑐, 𝑠𝑘𝑡𝑠, 𝑠𝑡𝑠)) def= match 𝑠𝑡𝑠 with Ret(𝑓 (𝑣1, .., 𝑣𝑛), 𝑟) ⇒ Some((𝑙𝑐, 𝑠𝑘𝑡𝑠, Idle), 𝑓 (𝑣1, .., 𝑣𝑛), 𝑟) | _⇒ None end

𝑠𝑐 = sendto(𝑠𝑖𝑑, 𝑖𝑝, 𝑝𝑜𝑟𝑡,𝑚)) 𝑙 = size(𝑚)
𝑠𝑘𝑡𝑠 [𝑠𝑖𝑑] ≠ ⊥ 𝑚𝑠out = [(𝑖𝑝, 𝑝𝑜𝑟𝑡,𝑚)]

𝑡 ⊢ (𝑙𝑐, 𝑠𝑘𝑡𝑠, Proc(𝑠𝑐)) 𝑚𝑠out−−−−→ (𝑙𝑐, 𝑠𝑘𝑡𝑠, Ret(𝑠𝑐, 𝑙))

𝑠𝑐 = recvfrom(𝑠𝑖𝑑, 𝑠𝑧) fetch(𝑠𝑘𝑡𝑠 [𝑠𝑖𝑑]) = Some(𝑠𝑘𝑡 ′,𝑚)
𝑠𝑘𝑡𝑠′ = 𝑠𝑘𝑡𝑠 [𝑠𝑖𝑑 ↦→ 𝑠𝑘𝑡 ′] 𝑚′ = prefix(𝑚,𝑠𝑧)

𝑡 ⊢ (𝑙𝑐, 𝑠𝑘𝑡𝑠, Proc(𝑠𝑐)) []−→ (𝑙𝑐, 𝑠𝑘𝑡𝑠′, Ret(𝑠𝑐,𝑚′))

𝑠𝑐 = get_time() 𝑙𝑡 = LCVal(𝑙𝑐)

𝑡 ⊢ (𝑙𝑐, 𝑠𝑘𝑡𝑠, Proc(𝑠𝑐)) []−→ (𝑙𝑐, 𝑠𝑘𝑡𝑠, Ret(𝑠𝑐, 𝑙𝑡))

𝑠𝑐 = set_time(𝑡𝑙,new) 𝑙𝑐′ = LCSet(𝑡, 𝑙𝑐, 𝑡𝑙,new)

𝑡 ⊢ (𝑙𝑐, 𝑠𝑘𝑡𝑠, Proc(𝑠𝑐)) []−→ (𝑙𝑐′, 𝑠𝑘𝑡𝑠, Ret(𝑠𝑐, 0))

𝑠𝑐 = sleep(𝑙𝑡𝑤) 𝑙𝑡𝑠 = LCVal(𝑙𝑐)

𝑡 ⊢ (𝑙𝑐, 𝑠𝑘𝑡𝑠, Proc(𝑠𝑐)) []−→
(𝑙𝑐, 𝑠𝑘𝑡𝑠, Wait(𝑙𝑡𝑠 , 𝑙𝑡𝑤))

𝑙𝑡 = LCVal(𝑙𝑐) 𝑙𝑡 < 𝑙𝑡𝑠 + 𝑙𝑡𝑤
𝑡 ⊢ (𝑙𝑐, 𝑠𝑘𝑡𝑠, Wait(𝑙𝑡𝑠 , 𝑙𝑡𝑤)) []−→

(𝑙𝑐, 𝑠𝑘𝑡𝑠, Wait(𝑙𝑡𝑠 , 𝑙𝑡𝑤))

𝑠𝑐 = sleep(𝑙𝑡𝑤) 𝑙𝑡 = LCVal(𝑙𝑐) 𝑙𝑡𝑠 + 𝑙𝑡𝑤 ≤ 𝑙𝑡

𝑡 ⊢ (𝑙𝑐, 𝑠𝑘𝑡𝑠, Wait(𝑙𝑡𝑠 , 𝑙𝑡𝑤)) []−→
(𝑙𝑐, 𝑠𝑘𝑡𝑠, Ret(𝑠𝑐, 0))

Fig. 5. Selected OS-model transition rules

• LCAdv(𝑡, 𝑙𝑡, 𝑙𝑡 ′) def= 𝑙𝑡 ≤ 𝑙𝑡 ′ ∧ (|𝑡 − 𝑙𝑡 | < 𝜀 =⇒ |(𝑡 + 1) − 𝑙𝑡 ′ | < 𝜀)
• LCSet(𝑡, 𝑙𝑡, 𝑙𝑡new)

def
= 𝑙𝑡new

Note that the second intantiation maintains the skew between the local and global clocks within
the given bound, provided the system does not set the clock. When the system does set the clock,
we consider two scenarios: (𝑖) if the new time still falls within the clock skew bound, the model
continues to behave normally, and (𝑖𝑖) if the new time exceeds the clock skew bound, the local
clock will be updated to an arbitrary value in a nondeterministic manner, which prevents any proof
from proceeding successfully. In essence, when setting the clock, we must prove that the new time
does not violate the clock skew bound. This approach ensures that our proofs remain valid only
when clock adjustments stay within the specified boundaries.

Building OS Model with System Calls. We now define the OS model based on the local clock
parameters as follows. An abstract OS state 𝑜𝑠 = (𝑙𝑐, 𝑠𝑘𝑡𝑠, 𝑠𝑡𝑠) consists of a clock state, a set of open
sockets, and a status indicating the ongoing process. Sockets can be bound to a port number, and
store inbound messages in their buffers. A status is either:

• Idle: No ongoing process
• Proc(𝑠𝑐): Processing a system call 𝑠𝑐 with arguments (e.g., 𝑠𝑐 = sleep(10))
• Wait(𝑙𝑡𝑠 , 𝑙𝑡𝑤): OS started waiting for 𝑙𝑡𝑤 amount of time since 𝑙𝑡𝑠 (in terms of local time)
• Ret(𝑠𝑐, 𝑣): Returing from 𝑠𝑐 with value 𝑣

Fig. 5 presents the functions and predicates that define the OS model’s event handling. These
events include initialization, local clock advancement, network message reception, and the in-
vocation, processing, and return of system calls. The OSInit predicate defines valid initial states
of the OS, while OSLCAdv advances the local clock in accordance with LCAdv. When messages
are received from the network, the OSAccept function distributes them to the appropriate open
sockets. System call invocations are handled by OSCall, which changes the status from Idle to
Proc. Once processing is complete, OSRet returns control and the resulting value to the program.
For system call processing, the rules follow the form 𝑡 ⊢ 𝑜𝑠 𝑚𝑠out−−−−→ 𝑜𝑠′ describing how the processing
changes the state of the OS with any messages transmitted to the network (𝑚𝑠out) at one time unit.
Throughout the paper, we use the shorthand notation 𝑡 ⊢ 𝑠 𝑒−→ 𝑠′ for (𝑡, 𝑠) 𝑒−→ (𝑡 + 1, 𝑠′). The bottom
of Fig. 5 presents specific rules for selected system calls.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:13

𝑡 ⊢ 𝑠𝑡 (𝑚𝑠in,𝑡𝑒,𝑚𝑠out)−−−−−−−−−−−→ 𝑠𝑡 ′

(Initialize)
OSInit(𝑜𝑠) ProgInit(𝑠)
𝑠𝑡 = (𝑡𝑟, 𝑙𝑎𝑡,∞, 𝑜𝑠, 𝑠)

𝑡 ⊢ (𝑡𝑟, Off) (𝑚𝑠in,𝜏,[])−−−−−−−→ 𝑠𝑡

(Failure)

𝑠𝑡 = (𝑡𝑟, 𝑙𝑎𝑡, 𝑡𝑜, 𝑜𝑠, 𝑠)

𝑡 ⊢ 𝑠𝑡 (𝑚𝑠in,𝜏,[])−−−−−−−→ (𝑡𝑟, Off)

(Latency)
𝑠𝑡 = (𝑡𝑟, 𝑙𝑎𝑡, 𝑡𝑜, 𝑜𝑠, 𝑠) LCVal(𝑜𝑠) < 𝑡𝑜 𝑙𝑎𝑡 > 0

OSAccept(𝑜𝑠,𝑚𝑠 in) = 𝑜𝑠1 𝑠𝑡 ′ = (𝑡𝑟, 𝑙𝑎𝑡 − 1, 𝑡𝑜, 𝑜𝑠1, 𝑠)

𝑡 ⊢ 𝑠𝑡 (𝑚𝑠in,𝜏,[])−−−−−−−→ 𝑠𝑡 ′

(TimeViolation)
𝑠𝑡 = (𝑡𝑟, 𝑙𝑎𝑡, 𝑡𝑜, 𝑜𝑠, 𝑠)

LCVal(𝑜𝑠) ≥ 𝑡𝑜

𝑡 ⊢ 𝑠𝑡 (𝑚𝑠in,𝜏,[])−−−−−−−→ 𝑠𝑡

(Progress)
𝑠𝑡 = (𝑡𝑟, 0, 𝑡𝑜, 𝑜𝑠, 𝑠) 𝑙𝑡 = LCVal(𝑜𝑠) < 𝑡𝑜 OSAccept(𝑜𝑠,𝑚𝑠 in) = 𝑜𝑠1 𝑡 ⊢ (𝑜𝑠1, 𝑠) (𝑒,𝑚𝑠out)−−−−−−→ (𝑜𝑠2, 𝑠′) OSLCAdv(𝑡, 𝑜𝑠2, 𝑜𝑠′)

𝑡𝑟 ′ = app_last(𝑡𝑟, 𝑙𝑡, 𝑒) 𝑡𝑜 ′ = T(𝑡𝑟, 𝑙𝑡, 𝑒, 𝑡𝑜) 𝑡𝑒 = ((isObsEv(𝑒)) ? (TimeOf(𝑙𝑡), 𝑒) : 𝜏) 𝑠𝑡 ′ = (𝑡𝑟 ′, 𝑙𝑎𝑡, 𝑡𝑜 ′, 𝑜𝑠′, 𝑠′)

𝑡 ⊢ 𝑠𝑡 (𝑚𝑠in,𝑡𝑒,𝑚𝑠out)−−−−−−−−−−−→ 𝑠𝑡 ′

𝑡 ⊢ (𝑜𝑠1, 𝑠) (𝑒,𝑚𝑠out)−−−−−−→ (𝑜𝑠2, 𝑠′)

(ProgramStep)

isIdle(𝑜𝑠1) 𝑠 𝜏−→*𝑠1 𝑒−→ 𝑠′

¬isOScall(𝑠′, 𝑒)

𝑡 ⊢ (𝑜𝑠1, 𝑠) (𝑒,[])−−−−→ (𝑜𝑠1, 𝑠′)

(OSCall)
𝑠 𝜏−→*𝑠1 𝑒−→ 𝑠′ 𝑒 = 𝑓 (𝑣1, .., 𝑣𝑛)

isOScall(𝑠′, 𝑒)
OSCall(𝑜𝑠1, 𝑒) = Some(𝑜𝑠2)

𝑡 ⊢ (𝑜𝑠1, 𝑠) (𝑒,[])−−−−→ (𝑜𝑠2, 𝑠′)

(OSStep)

𝑡 ⊢ 𝑜𝑠1 𝑚𝑠out−−−−→ 𝑜𝑠2

𝑡 ⊢ (𝑜𝑠1, 𝑠) (𝜏,𝑚𝑠out)−−−−−−−→ (𝑜𝑠2, 𝑠′)

(OSReturn)
𝑠𝑐 = 𝑓 (𝑣1, .., 𝑣𝑛)

OSRet(𝑜𝑠1) = Some(𝑜𝑠2, 𝑠𝑐, 𝑟)
𝑠
⟨𝑠𝑐,𝑟 ⟩
−−−−→ 𝑠′

𝑡 ⊢ (𝑜𝑠1, 𝑠) (⟨𝑠𝑐,𝑟 ⟩,[])−−−−−−−→ (𝑜𝑠2, 𝑠′)
Fig. 6. Node transition rules

4.2 Concrete Node Model
Now, we construct a concrete node model by integrating the OS model with the untimed semantics
of a program. Building upon the timed operational semantics construction method described in §2,
we address additional complexities, including node failures, local clocks, message communication
through the network, and control transitions between the program and OS. Fig. 6 presents the
transition rules for this model, which we will explain in detail.

To model node failures, we define a node state as either inactive (𝑡𝑟, Off) or active (𝑡𝑟, 𝑙𝑎𝑡, 𝑡𝑜, 𝑜𝑠, 𝑠),
with the active state following our construction method. An inactive node may reboot at any time,
as described by the Initialize rule. We assume a predicate ProgInit specifies the program’s initial
states. Conversely, an active node may unexpectedly fail, as described by Failure.

The next three rules largely follow our construction method, with adaptations for local clock and
message communication. In these rules, we compare the timeout 𝑡𝑜 against LCVal(𝑜𝑠), implicitly
coercing 𝑜𝑠 to its clock state. For message communication, non-violation transitions (Latency
and Progress) first process incoming messages𝑚𝑠 in via OSAccept. Latency simply decreases 𝑙𝑎𝑡
thereafter. Progress involves a nested transition for OS and program state, followed by local clock
advancement via OSLCAdv. To determine the timed observable event 𝑡𝑒 , we exclude non-observable
events like 𝜏 and system call events, which are considered internal program-OS communication. The
framework takes as input a timestamp generator TimeOf, supporting timestamp abstraction. This
feature is used in §8 for matching timestamps between asynchronous and synchronous executions.
System call events are still recorded in 𝑡𝑟 , as T uses them to update 𝑡𝑜 .

The bottom four rules in Fig. 6 present the transitions of program and OS states, and how control
passes between them. ProgramStep and OSStep represent normal transitions of the program and
OS components, respectively. Program steps can occur when the OS is idle, while OS steps may
involve releasing outgoing messages, as we have seen in §4.1. We define a predicate isOScall to
determine if a program state has just called a specific system call. OSCall and OSReturn represent
the control transfers between the program and OS, potentially updating timeout values.

4.3 Network Model
The top-level structure of the concrete distributed system model is composed of a list of node
models and our network model. A node model is a tuple (𝑖𝑝, 𝑆𝑇 ,→, 𝑠𝑡 init) of the node’s distinct IP
address 𝑖𝑝 , set of states 𝑆𝑇 , transition rules→, and initial state 𝑠𝑡 init. Our concrete node model is
an instance of node model, with 𝑠𝑡 init = {([], Off)}. The network model is a transition system with

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:14 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

two separate transition stages for distributing (−→distr) and gathering (−→gather) messages generated
from the nodes. The network model can represent various types of network behaviors by setting
two parameters: the maximum delivery time 𝜇 and the maximum duplicated deliveries 𝜅 for a
message. If the network takes a transition step violating the parameters, it generates a special event
that can later be classified as no-behavior by the event classification C. We present the construction
of a distributed system model (Σ,→, 𝐼) in §3 as follows.
A global state (𝑡, 𝑛𝑤, ®𝑠𝑡) consists of a global time, a network state, and a list of node states.

First, a network state is a pair 𝑛𝑤 = (®𝑚𝑐, ®𝑚𝑠) of a multicast group table and a list of in-transit
messages. Each entry (𝑖𝑝mc, 𝑖𝑝, 𝑡send, 𝑏) ∈ ®𝑚𝑐 contains the IP address of a multicast group (e.g.,
one of Class D addresses [Cotton and Vegoda 2010]), the local IP address of a node belonging to
the group, the time the “join” request is released to the network, and the boolean flag indicating
whether the join process is completed (which also takes at most 𝜇 since it is requested). Each entry
(𝑖𝑝dst,𝑚, 𝑡send, 𝑑) ∈ ®𝑚𝑠 contains a message, the time it was released to the network, and the number
of deliveries (>1 for duplicates) until now. Third, each entry ®𝑠𝑡 [𝑖] represents the current state of the
𝑖’th node. The initial global state is given by (0, ([], []), [𝑠𝑡 init,0, . . . , 𝑠𝑡 init,𝑁−1]), for 𝑁 nodes.

The transition rule of a global state is given as follows:

𝑡 ⊢ 𝑛𝑤 (®𝑚𝑠 in,𝑡𝑒nw)−−−−−−−−→distr 𝑛𝑤1 ∀𝑖 < 𝑁 . 𝑡 ⊢ ®𝑠𝑡 [𝑖] (®𝑚𝑠 in [𝑖], ®𝑡𝑒 [𝑖], ®𝑚𝑠out [𝑖])−−−−−−−−−−−−−−−−−→ ®𝑠𝑡
′ [𝑖] 𝑡 ⊢ 𝑛𝑤1

®𝑚𝑠out−−−−→gather 𝑛𝑤
′

(𝑡, 𝑛𝑤, ®𝑠𝑡) 𝑡𝑒nw:: ®𝑡𝑒−−−−−→ (𝑡 + 1, 𝑛𝑤 ′, ®𝑠𝑡
′)

Note that a transition occurs at every tick of the time unit in three stages:

• Distributing Messages: The distributing network transition −→distr non-deterministically se-
lects the messages ®𝑚𝑠 in to be distributed in this step and updates the multicast group table,
resulting in the intermediate network state 𝑛𝑤1. Here, ®𝑚𝑠 in is an indexed list according to
the IP addresses of the nodes. 𝑡𝑒nw may contain three kinds of network events related to
𝜇 and 𝜅: (𝑖) LateDeliv(𝑖𝑝dst,𝑚) if 𝜇 has just expired now but 𝑚 is not delivered yet, (𝑖𝑖)
DupOverLimit(𝑖𝑝dst,𝑚) if𝑚 has already been delivered at least 𝜅 times but is included again in
®𝑚𝑠 in, and (𝑖𝑖𝑖) LateArrv(𝑖𝑝dst,𝑚) if 𝜇 has already expired but𝑚 is included in ®𝑚𝑠 in.

• Taking a Step: With the incoming messages, each node takes a step in parallel. Each node state
®𝑠𝑡 [𝑖] at time 𝑡 takes the incoming messages ®𝑚𝑠 in [𝑖], generates timed events ®𝑡𝑒 [𝑖] and a (possibly
empty) outgoing message ®𝑚𝑠out [𝑖], and transitions to the next state ®𝑠𝑡 ′ [𝑖] at time 𝑡 + 1.
• Gathering Messages: After every node takes a step, the network gathers the outgoing messages
®𝑚𝑠out to form the next network state 𝑛𝑤 ′. Specifically, this step adds entries of ®𝑚𝑐 or ®𝑚𝑠 for each
well-formed outgoing message according to the message type: either a normal data message or a
multicast join request. For example, if a message contains normal data sent to a multicast group,
the message is copied for each group member according to ®𝑚𝑐 and then included in ®𝑚𝑠 .

5 Proof Techniques
VeriRT offers three simulation relations as proof techniques to assist the user in proving the
refinement. Each technique is designed for different stages in the end-to-end refinement proof
outlined in Fig. 4. From the bottom of the figure, we will discuss how each proof technique addresses
the challenges at each stage. For the presentation purpose, we omit stuttering indexes [Leroy 2009b]
from our simulation relations in this section, which is indeed necessary for their soundness.

Note that, the three simulation relations we present here, each matching states of two semantics
at each level, can be easily lifted to relations matching two semantics themselves. Hence, when
referring to simulation, we interchangeably use the term for both between states and semantics.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:15

5.1 Program-Local Simulation
The program-local simulation relation is used for local abstractions on the program components
in the concrete distributed system model, which occurs in the first two stages of the end-to-end
refinement proof. In the first stage, the framework internally applies this technique to construct the
formal compiler correctness proof with respect to the global-level timed behaviors (see §6). In the
second stage, the user is expected to verify their C programs against their abstract specifications,
which will ensure the absence of implementation bugs and also facilitate subsequent refinement
proofs by preemptively abstracting away the subtleties of formal C semantics.

For this purpose, we design our program-local simulation as a conventional, untimed simulation
relation. This is made possible by the fact that our composition of timed operational semantics
from the computational behaviors and timing assumptions is essentially orthogonal. Once the user
establishes a program-local simulation proof, the framework will internally lift it to a node-local
simulation (§5.2) by combining it with the given timing assumptions.

The definition of the simulation relation between two “source” and “target” program semantics
(𝑆s,→s, 𝐼s, 𝐹s) and (𝑆t,→t, 𝐼t, 𝐹t) is like the following:

𝑠s ¥ 𝑠t
coind
= (𝑖) (𝑠s ∈ 𝐹s ∧ 𝑠t ∈ 𝐹t) ∨ (𝑖𝑖) err(𝑠s) ∨
(𝑖𝑖𝑖) ¬err(𝑠t) ∧ (∀𝑒, 𝑠′t . 𝑠t 𝑒−→ 𝑠′t ⇒ ∃𝑠′s . 𝑠s 𝑒−→+𝑠′s ∧ 𝑠′s ¥ 𝑠′t) (2)

The relation coinductively matches two program states 𝑠s and 𝑠t as follows. First, two states are
matched if they are (𝑖) final states, (𝑖𝑖) if 𝑠s may trigger undefined behavior (denoted as err(𝑠s)),
or (𝑖𝑖𝑖) 𝑠t is a safe (i.e., non UB-generating) state where every step from it can be matched with one
or more steps of 𝑠s.

5.2 Node-Local Simulation
After the abstraction of programs, the user may use our node-local simulation relation for further
local abstractions on the OS-Node models. Specifically, the user is supposed to show that the
compositions of the timing assumptionss and the computational specifications of programs together
refine more abstract node-level specifications (e.g., Fig. 1).

Now, we need to build a timed simulation, i.e., one can simulate another in terms of not only the
order of events, but also the timings, too. In particular, the incoming and outgoing messages should
occur at exactly identical times, since the incoming messages are controlled by the environment
(i.e., the network model) and differences in timings of outgoing messages may alter the behaviors
of other nodes.

Therefore, the user is required to resolve node-local timing issues throughout the proof. Especially,
the OS-Node model may produce an infinite number of non-deterministic timed behaviors due to
the random latencies of internal program steps and skews of the local clock. The main task of the
proof is thus to make sure that the non-determinism in timings is well-constrained by no-behavior
events generated according to the given time constraints.
To assist the proof from the framework’s side, we design the node-local simulation as follows,

where the key differences with conventional simulations are highlighted in red:

𝑡 ⊢ 𝑠𝑡s ≾ 𝑠𝑡t
coind
= err(𝑠𝑡s) ∨
¬err(𝑠𝑡t) ∧ (∀𝑚𝑠 in, 𝑡𝑒,𝑚𝑠out, 𝑠𝑡 ′t . (𝑡 ⊢ 𝑠𝑡t

(𝑚𝑠 in,𝑡𝑒,𝑚𝑠out)−−−−−−−−−−−→ 𝑠𝑡 ′t) ⇒
(𝑖) ∃𝑡𝑁 , 𝑒𝑁 . (𝑡𝑁 , 𝑒𝑁) ∈ 𝑡𝑒 ∧ C(𝑒𝑁) = NB ∨

(𝑖𝑖) ∃𝑠𝑡 ′s . (𝑡 ⊢ 𝑠𝑡s
(𝑚𝑠 in,𝑡𝑒,𝑚𝑠out)−−−−−−−−−−−→𝑠𝑡 ′s) ∧ ((𝑡 + 1) ⊢ 𝑠𝑡 ′s ≾ 𝑠𝑡 ′t)) (3)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:16 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

The differences are introduced for the following reasons. First, the relation takes the global time
𝑡 since the transition rules of a node-level operational semantics may depend on 𝑡 . Second, for a
target step generating NB events, the simulation does not require matched source steps, since the
target step will not produce any observable behaviors. Third, for each target step it requires exactly
one matched source step to enforce the events and message exchanges to occur at the identical
time. Recall that a single OS-Node step takes one time tick, during which an arbitrary number of
program steps may take place to account for the non-determinism of timings.
We present our simulation-lifting theorem that converts a program-local simulation into a

node-local simulation between two OS-Node states here (see [Kim et al. 2024] for the proof sketch):

Theorem 5.1 (Simulation-Lifting Theorem). For two programs 𝑝s, 𝑝t,
∀𝑠s ∈ 𝑝s .𝑆, 𝑠t ∈ 𝑝t .𝑆 . 𝑠s ¥ 𝑠t =⇒ ∀𝑡, 𝑡𝑟, 𝑙𝑎𝑡, 𝑡𝑜, 𝑜𝑠. 𝑡 ⊢ (𝑡𝑟, 𝑙𝑎𝑡, 𝑡𝑜, 𝑜𝑠, 𝑠s) ≾ (𝑡𝑟, 𝑙𝑎𝑡, 𝑡𝑜, 𝑜𝑠, 𝑠t).

5.3 Global Simulation
Finally, the framework provides the global simulation relation for abstractions of the entire system.
With this simulation, the user can complete the end-to-end refinement from the distributed system
model with assembly programs to a monolithic, centralized abstract specification of the system.
The user would aim to abstract away subtleties caused by distributed computation, e.g., randomness
in network message delivery times and asynchronous paces of execution between the nodes.
Eliminating the asynchronies may require the reallocation of events over multiple steps. For

example, consider the top-level global specification as an ideally synchronized model in which
every node periodically runs in a lock-step manner. In this case, events for a certain period will be
generated at a designated time, simultaneously. However, the corresponding concrete distributed
system model will generate events with certain intervals between them, asynchronously between
the nodes, reflecting the real-world scenario. Therefore, a proof technique that supports event
reallocation over multiple steps would be helpful in this stage.

For this purpose, we designed our global simulation as a delayed simulation below, which allows
one to postpone the decision of matched source steps during the proof by accumulating the trace
generated by multiple target steps:

𝜎s≾∼𝑡𝑟acc𝜎t
coind
= err(𝜎s) ∨

¬err(𝜎t) ∧ (∀®𝑡𝑒 t, 𝜎 ′t . (𝜎t
®𝑡𝑒 t−−→ 𝜎 ′t) ⇒

(𝑖) ∃𝑡𝑁 , 𝑒𝑁 . (𝑡𝑁 , 𝑒𝑁) ∈ ®𝑡𝑒 t ∧ C(𝑒𝑁) = NB ∨ (𝑖𝑖) 𝜎s≾∼(𝑡𝑟acc++ ®𝑡𝑒 t)𝜎
′
t ∨

(𝑖𝑖𝑖) ∃®𝑡𝑒s, 𝜎 ′s . 𝜎s
®𝑡𝑒s−−→+𝜎 ′s ∧ ®𝑡𝑒s ≡ (𝑡𝑟acc ++ ®𝑡𝑒 t) ∧ (𝜎 ′s≾∼[]𝜎

′
t) (4)

Now, the relation is indexed with a trace 𝑡𝑟acc. The main difference is that when the target state
𝜎t takes a step, the user may choose to accumulate the trace (𝑖𝑖) to delay the matching process.
After that, when the target system reaches a proper state (𝑖𝑖𝑖), the user gets to pick proper source
steps that generate an equivalent trace to resolve the accumulated trace and can proceed to the next
relation with the empty trace index. The equivalence relation ≡ decides whether the two traces
have timed events with identical order and timestamps but without requiring them to be generated
in identical time ticks.

6 Lifting CompCert’s Proof
The bottom-most stage in the end-to-end refinement is a composition of two sub-stages of proof
included in CompCertRT. First, we generically convert the CompCertM [Song et al. 2019]’s “mixed-
simulation” to our timed program-local simulation, from which we derive the timed refinement

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:17

using Theorem 5.1. Up to this point, the assembly modules are logically linked by CompCertM’s
module semantics. Then, by porting CompCertM’s proof of the adequacy of logical linking of
assemblies against syntactic linking, we complete the end-to-end timed refinement proof with
respect to the syntactic linking of compiled assemblies.

6.1 Lifting of Mixed Simulation
First, We derive our program simulation from the mixed simulation of CompCertM. Let R be
the set of mixed simulations—a few instantiations of a single generic open simulation—used by
CompCertM that covers every compiler pass of CompCert. See [Kim et al. 2024] for the properties
of mixed simulation.

Lemma 6.1 (Mixed Simulation to Program Simulation). For any pair of modules (𝑀𝑆 , 𝑀𝑇)
related by a mixed simulation relation 𝑅 ∈ R, and any two list of modules ®𝑀𝐿 and ®𝑀𝑅 whose element
is self-related by 𝑅 (i.e., ∀𝑀 ∈ ®𝑀𝐿 ∪ ®𝑀𝑅 .(𝑀,𝑀) ∈ 𝑅), the following program-local simulation holds:
(®𝑀𝐿 ++ [𝑀𝑆] ++ ®𝑀𝑅) ¥ (®𝑀𝐿 ++ [𝑀𝑇] ++ ®𝑀𝑅).

By applying Lemma 6.1 and Theorem 5.1 repeatedly, we prove Lemma 6.2 that guarantees the
correctness of the CompCertM’s translation 𝐶 w.r.t. timed refinement.

Lemma 6.2 (Correctness of CompCertM’s translation). For any list of Clight modules
[𝑆1, ..., 𝑆𝑛] and Asm modules [𝑇1, ...,𝑇𝑛], if 𝐶 (𝑆𝑖) = 𝑇𝑖 for each 𝑖 ∈ [1, 𝑛], then for any identical
𝑖𝑝 , the concrete node model with the program [𝑇1, ...,𝑇𝑛] contextually refines the concrete node model
with the program [𝑆1, ..., 𝑆𝑛].

6.2 Syntactic Linking of Assembly Programs
While the result of Lemma 6.2 lowers each Clight module into the compiled Asm modules, the
modules are logically linked by the interaction semantics. We first prove Lemma 6.3 that implies that
the syntactic linking of the Asm modules preserves the semantics, and combine it with Lemma 6.2
to prove the final compiler correctness theorem in terms of the concrete system model.

Lemma 6.3 (Syntactic Linking of Asms). For any list of Asm modules [𝑇1, ...,𝑇𝑛], if the syntactic
linking succeeds and produces an Asm module 𝑇 such that 𝑇1 ◦ ... ◦𝑇𝑛 = 𝑇 , then [𝑇1, . . . ,𝑇𝑛] ¥ [𝑇].

Theorem 6.4 (Lifting CompCert’s Proof). For a C program 𝐶𝑖 = [𝑆𝑖1, ..., 𝑆𝑖𝑛] consisting of
multiple C files and the assembly program 𝐴𝑖 = [𝑇 𝑖] obtained by syntactically linking the separately
compiled assemblies for each 𝑖 , the concrete distributed system model with [𝐴1, . . . , 𝐴𝑛] refines the
concrete distributed system model with [𝐶1, . . . ,𝐶𝑛].

7 Case Study 1: Clock Synchronization
Cristian’s algorithm is a protocol for synchronizing local clocks in distributed systems using a
client-server architecture [Cristian 1989]. The algorithm’s simple structure involves one round-trip
message exchange between a client and server. The process begins with the client requesting the
server’s local clock value. Upon receiving the response, the client adjusts its local clock based on
the assumption that the travel times for the request and response messages are likely to be similar.
In this case study, we develop and verify a client-server system that periodically synchronizes local
clocks using Cristian’s algorithm.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:18 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

7.1 Analysis on Clock Synchronization

Fig. 7. Analysis of Cristian’s algorithm

We conduct a formal analysis of the bounds of
clock skews based on these assumptions:
• Hardware clock skew: The local clocks fol-
low the hardware clock rate assumption (§4.1).
• System call response delay:When the pro-
gram is waiting for a certain condition via a
system call (e.g., a response from the timer or
the network), the execution will resume within
a constant time 𝛿 in terms of the local clock,
after the condition is satisfied.
• WCET (Bounded execution time for sending a request): The local time between a timer
return and waiting for the server’s response is bounded by 𝐸1 (see Fig. 7).
• WCET (Bounded execution time for processing the response): After the client receives the
response, the local time until the client’s local clock is updated is bounded by 𝐸2.
Now, we walk through one successful period of synchronization illustrated in Fig. 7. Consider a

period that is supposed to start at 𝑥 . When the period starts, the timer wakes up the client before
its local clock points 𝑥 + 𝛿 and the round trip of messages begins within 𝐸1. Within the round trip
that takes Δ𝑅𝑇 , the server receives the request and sends the response message that contains a
local time𝑤 sampled in between. Let Δ𝑡1 denote the global time taken from the sampling of𝑤 to
the end of the round trip, during which the local clocks of the client and server change to 𝑦 and
𝑤 + Δ𝑤1. Then, within 𝛿 , the client will resume, so reads its local time 𝑦′ and then sets the local
clock from a value 𝑦′′ to 𝑧 = 𝑤 + (𝑦′ − 𝑥)/2 within 𝐸2 after the resume. Let Δ𝑡2 denote the global
time taken from the end of the round trip up to this point, during which the local clocks of the
server change to 𝑣 = 𝑤 + Δ𝑤1 + Δ𝑤2.

We derive the following bound, which depends on Δ𝑅𝑇 (see [Kim et al. 2024] for details):

−(1 + 3𝜌
2
)Δ𝑅𝑇 − 1 + 𝜌

1 − 𝜌 (𝛿 + 𝐸2) ≤ 𝑧 − 𝑣 ≤ 1 + 𝜌
2

Δ𝑅𝑇 + 1
2
(𝛿 + 𝐸1)

Building on this result, we can bound the skew by imposing additional assumptions on the
network and the server-side execution time. Let us assume that themessage delivery time is bounded
by 𝜇, and the server-side operation takes at most 𝛿 + 𝐸3. Then, we obtain Δ𝑅𝑇 ≤ 2𝜇 + 𝐸3/(1 − 𝜌),
resulting in the following skew bound 𝜀:

|𝑧−𝑣 | < 𝜀 = max
(
(1 + 3𝜌

2
) (2𝜇 + 𝐸3/(1 − 𝜌)) +

1 + 𝜌
1 − 𝜌 (𝛿 + 𝐸2),

1 + 𝜌
2
(2𝜇 + 𝐸3/(1 − 𝜌)) +

1
2
(𝛿 + 𝐸1)

)
Our System Design. In practical implementations of the above algorithm, server-side queues of

pending requests can complicate verification. These queues may form due to various factors: overly
frequent or duplicate client requests, delayed message deliveries, competition among multiple
clients, and other issues. Since an unpredictable number of pending requests can prevent accurate
estimation of an upper bound for Δ𝑅𝑇 , we need to establish conditions to control these factors to
eliminate pending requests.

To address the issue, we configure our networkmodel as𝜅 = 1, setting C(LateDeliv(_, _)) = Obs
while classifying other network events as NB. This configuration eliminates message duplication and
late arrivals, while permitting message drops. Such a setup can be realized through a background
procedure that runs a duplicate resolution algorithm and discards excessively delayed messages by
examining their timestamps.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:19

For simplicity, we narrow our focus to a single-client scenario. We program the client to maintain
a minimum interval 𝐸wait between successive requests. Specifically, this interval must satisfy the
condition: 𝜇 + (𝛿 + 𝐸3)/(1 − 𝜌) < 𝐸wait/(1 + 𝜌). Here, (𝛿 + 𝐸3)/(1 − 𝜌) represents the maximum
global time for the server to process a request, while 𝐸wait/(1 + 𝜌) is the minimum global time for
the client to wait 𝐸wait with respect to its local clock.

7.2 Verification
To verify the skew bound presented in §7.1 for our implementation, we design a specification
and proof structure based on two abstract node models. We define two such models, one for the
server and one for the client, each with its own local clock. For each abstract node, we establish a
node-local simulation with its corresponding concrete node, which also ensures exact matching
of local clocks. We then prove that the distributed system with these abstract nodes satisfies a
global invariant 𝐼glob, from which we derive the skew bound. By combining these results with the
soundness of node-local simulation provided by VeriRT, we prove our goal.

Handling Distributed Concurrency. For a system state (𝑡, 𝑛𝑤, [𝑠𝑡 sv, 𝑠𝑡 cl]) where 𝑠𝑡 sv and 𝑠𝑡 cl
represent the abstract server and client node states respectively, we define local invariants for each
node to facilitate local reasoning. Our proof proceeds in three steps: we derive the local invariants
from the global invariant, verify their preservation during transition steps, and then combine these
results to establish the global invariant for the subsequent state. We focus here on the server-side
local invariant; the client-side follows a similar approach, which is detailed in [Kim et al. 2024].

The server-side local invariant consists of two parts: 𝐼sv (𝑡, 𝑛𝑤, 𝑠𝑡 sv) = 𝐼 stsv (𝑡, 𝑛𝑤, 𝑠𝑡 sv) ∧ 𝐼
rsp
sv (𝑡, 𝑛𝑤,

𝑠𝑡 sv). At a high level, 𝐼 stsv implies:
(1) If 𝑠𝑡 sv is idle, 𝑛𝑤 contains at most one in-transit request from the client.
(2) If 𝑠𝑡 sv is processing a request 𝑟𝑒𝑞 = ⟨𝑖𝑑req⟩, then 𝑛𝑤 contains no in-transit requests. For such

𝑟𝑒𝑞, let 𝑡𝑟𝑒𝑞s and 𝑡
𝑟𝑒𝑞
r be the client’s sending time and server’s receiving time, respectively.

Then 𝑡
𝑟𝑒𝑞
r − 𝑡𝑟𝑒𝑞s < 𝜇 and 𝑡 − 𝑡𝑟𝑒𝑞r < (𝛿 + 𝐸3)/(1 − 𝜌).

𝐼
rsp
sv implies that for any in-transit response 𝑟𝑠𝑝 = ⟨𝑖𝑑req, 𝑡sv⟩ in 𝑛𝑤 , there exists a corresponding
request 𝑟𝑒𝑞 = ⟨𝑖𝑑req⟩ in 𝑛𝑤 satisfying the following: let 𝑡𝑟𝑒𝑞s and 𝑡𝑟𝑒𝑞r be 𝑟𝑒𝑞’s sending and receiving
times, and 𝑡

𝑟𝑠𝑝
s be 𝑟𝑠𝑝’s sending time, then 𝑡

𝑟𝑒𝑞
r − 𝑡𝑟𝑒𝑞s < 𝜇, 𝑡𝑟𝑠𝑝s − 𝑡𝑟𝑒𝑞r < (𝛿 + 𝐸3)/(1 − 𝜌), and

𝑡 − 𝑡𝑟𝑠𝑝s < 𝜇. Additionally, 𝑡sv must be a valid local time sampled by the server between 𝑡𝑟𝑒𝑞r and 𝑡𝑟𝑠𝑝s .
For message generation, we assume a property of client-generated messages that must be proven

on the client side:𝐺cl (𝑡, 𝑛𝑤,𝑚𝑠out,cl) = ∀𝑟𝑒𝑞′ ∈𝑚𝑠out,cl, 𝑟𝑒𝑞 ∈ 𝑛𝑤. 𝑟𝑒𝑞′ ≠ 𝑟𝑒𝑞∧𝑡𝑟𝑒𝑞s +𝐸wait/(1+𝜌) < 𝑡 .
This ensures the client adheres to the minimum interval 𝐸wait. Conversely, the server must guarantee
a property for the client side: 𝐺sv (𝑡, 𝑛𝑤,𝑚𝑠out,sv) = ∀𝑟𝑠𝑝 = ⟨𝑖𝑑req, 𝑡sv⟩ ∈𝑚𝑠out,sv . ⟨𝑖𝑑req⟩ ∈ 𝑛𝑤 .

Lemma 7.1, which states the preservation of 𝐼sv, is presented below along with a high-level proof:

Lemma 7.1 (Server-side local invariant). For a global state (𝑡, 𝑛𝑤, [𝑠𝑡 sv, 𝑠𝑡 cl]), a distribution
of messages 𝑡 ⊢ 𝑛𝑤 ([𝑚𝑠 in,sv,𝑚𝑠 in,cl],𝑡𝑒nw)−−−−−−−−−−−−−−−−→distr 𝑛𝑤1 with no NB events in 𝑡𝑒nw and a node-local transition

𝑡 ⊢ 𝑠𝑡 sv (𝑚𝑠 in,sv,𝑡𝑒𝑠𝑣 ,𝑚𝑠out,sv)−−−−−−−−−−−−−−−→ 𝑠𝑡 ′sv, if 𝐼sv (𝑡, 𝑛𝑤, 𝑠𝑡 sv) and 𝐺cl (𝑡, 𝑛𝑤,𝑚𝑠out,cl) hold, then 𝐺sv (𝑡, 𝑛𝑤,𝑚𝑠out,sv)
holds, and for the network gathering step 𝑡 ⊢ 𝑛𝑤1

[𝑚𝑠out,sv,𝑚𝑠out,cl]−−−−−−−−−−−−→gather 𝑛𝑤
′, 𝐼sv (𝑡 + 1, 𝑛𝑤 ′, 𝑠𝑡 ′sv) holds.

Proof. We perform a case analysis on 𝑠𝑡 sv as follows:
• If 𝑠𝑡 sv is idle: 𝑛𝑤 ′ will have at most one request. If there is a new request in𝑚𝑠out,cl,𝐺cl ensures
𝑡
𝑟𝑒𝑞
s + 𝜇 < 𝑡 for all existing 𝑟𝑒𝑞, implying 𝑟𝑒𝑞 is not in-transit.
– If no request arrives: 𝑠𝑡 ′sv remains idle, implying 𝐼 stsv. 𝐼

rsp
sv holds as there is no new response

in 𝑛𝑤 ′ and remaining in-transit responses satisfy the conditions.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:20 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

– If a new request 𝑟𝑒𝑞 arrives: The server processes 𝑟𝑒𝑞, establishing 𝐼 stsv from the network
assumptions. 𝐼 rspsv holds for the same reason as above.

• If 𝑠𝑡 sv is processing a request 𝑟𝑒𝑞: 𝐺cl and 𝐼 stsv together imply𝑚𝑠out,cl = [].
– If 𝑠𝑡 ′sv still processes 𝑟𝑒𝑞: 𝐼 stsv holds, otherwise 𝑡 − 𝑡

𝑟𝑒𝑞
r ≥ (𝛿 + 𝐸3)/(1 − 𝜌) contradicts the

timing assumptions.
∗ If𝑚𝑠out,sv is empty: 𝐼 rspsv holds as in previous cases.
∗ If𝑚𝑠out,sv contains 𝑟𝑠𝑝: 𝑟𝑠𝑝 is a new response for 𝑟𝑒𝑞. 𝐼 rspsv holds for the new response.
𝐺sv is ensured straightforwardly with 𝑟𝑒𝑞.

– If 𝑠𝑡 ′sv completes processing 𝑟𝑒𝑞: 𝐼 stsv holds as 𝑠𝑡 ′sv is idle with no in-transit request. 𝐼 rspsv holds
under the same case analysis on𝑚𝑠out,sv.

□

Finally, we define the global invariant as 𝐼glob (𝑡, 𝑛𝑤, [𝑠𝑡 sv, 𝑠𝑡 cl]) = 𝐼sv (𝑡, 𝑛𝑤, 𝑠𝑡 sv) ∧ 𝐼cl (𝑡, 𝑛𝑤, 𝑠𝑡 cl).
From the lemmas on local invariants, we derive Theorem 7.2, which establishes the preservation of
the global invariant.

Theorem 7.2 (Global invariant). For a global state (𝑡, 𝑛𝑤, [𝑠𝑡 sv, 𝑠𝑡 cl]) that satisfies the invariant
𝐼glob (𝑡, 𝑛𝑤, [𝑠𝑡 sv, 𝑠𝑡 cl]), any transition step (𝑡, 𝑛𝑤, [𝑠𝑡 sv, 𝑠𝑡 cl]) ®𝑡𝑟−→ (𝑡 ′, 𝑛𝑤 ′, [𝑠𝑡 ′sv, 𝑠𝑡 ′cl]) without generat-
ing NB satisfies 𝐼glob (𝑡 ′, 𝑛𝑤 ′, [𝑠𝑡 ′sv, 𝑠𝑡 ′cl]).

8 Case Study 2: PALSware
PALSware [Al-Nayeem et al. 2013] is a middleware implementation of physically asynchronous
logically synchronous (PALS) architectural design [Al-Nayeem et al. 2009; Sha et al. 2009] for real-
time distributed systems. It aims to provide a logically synchronous view for the application layer
on top of an asynchronous underlying environment based on a set of assumptions. An application of
PALSware consists of multiple modules, called tasks, that run on each physical node. Each physical
node runs a PALSware instance, which periodically launches its task’s job.

8.1 Correctness of Synchronization
PALSware achieves correct synchronization based on the following requirements on the envi-
ronment [Sha et al. 2009]. As we target safety-critical systems, we achieve strong and precise
guarantees on top of strong assumptions obtained from additional hardware/software support, e.g.,
duplicating networks, while most other distributed system verification work aims to guarantee the
preservation of certain safety invariants under realistic network failures [Hawblitzel et al. 2015;
Honoré et al. 2022; Wilcox et al. 2015].

• Clock synchronization assumption: The local clocks follow the clock synchronization as-
sumption (§4.1). Operating a clock synchronization protocol [PTP 2020; Cristian 1989; Mills
1992] on a real-time OS and reliable network will realize this condition.

• Reliable network: The network delivers every packet within the maximum network delay
𝜇, possibly with reorderings but without any duplication or loss. This assumption has been
studied [Abbasloo and Chao 2020; Chou et al. 1990] and realized with a high probability [Inc.
2005] for safety-critical systems.

• Timer response delay: OS_wait_timer will wake up within the maximum wakeup delay 𝛿

in the local clock after the timer expires. Conceptually, it could be subsumed by the WCET
assumption below, but we separate it for a precise OS model.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:21

(a) Global view (b) Detailed view
Fig. 8. Active-standby system running on PALSware

• WCET (Worst-Case Execution Time): For each period, the program execution time (i.e., the
time taken from waking up to the next sleep) does not exceed 𝑇 − 2𝜀 − 𝜇 − 𝛿 in the local clock
for the length of period 𝑇 .4

Fig. 8 illustrates how PALSware correctly operates the active-standby system under these as-
sumptions. Fig. 8a shows an execution of the actual system in which the controllers are toggled, and
Fig. 8b zooms in on the first period. Initially, PALSware on ECU2 is sleeping after setting the timer
to 𝑥 . Then, it wakes up before 𝑥 + 𝛿 due to the third assumption and soon launches an active job.
The job sends the heartbeat message to ECU3 before completion, at which the global clock (boxed
in the figure) is at most 𝑥 +𝑇 − 𝜀 − 𝜇. Therefore, the message is delivered no later than 𝑥 +𝑇 − 𝜀 in
the global clock, which is the earliest time for any node to start the next period, guaranteeing that
the next job on ECU3 will receive the heartbeat.

Our Implementation of PALSware. In this work, we simplified three functional features of
the original work of PALSware [Al-Nayeem et al. 2013] for verification. First, we support a single
period length, while the original work supports the multi-rate and multi-phase extensions. Second,
we allow at most one message for each sender-receiver pair of tasks in a period.5 Third, we do not
implement the fault management logic with user-defined exception handlers for violations of the
assumptions. Our middleware works as PSync [Drăgoi et al. 2016] when violations occur, though
our formal result does not include it.

Our Application on PALSware. In this case study, we consider an active-standby system
simplifying a flight control system [Al-Nayeem et al. 2013, 2009; Sha et al. 2009] for an application
of PALSware to verify. The system is composed of three distributed tasks: two replicated controllers
for fault tolerance and one console for the user interface to switch the active side. As a practical
application of the active-standby system, we implement and verify a resource scheduling system
whose scheduler is replicated as two active-standby controllers. The controllers manage a mutex
lock for a single resource, which is occasionally requested by multiple device tasks. The controllers
maintain a circular queue of requests, which is inserted in the Heartbeat for backup. The controllers
and devices are designed to achieve safety and liveness of the system under unexpected failures of
any devices and at most one controller.

8.2 Verification
Our end-to-end timed behavioral refinement proof is a vertical composition of four layers, where
each incrementally abstracts away concrete details of the bottom-level system model. Table 1

4The original work of PALSware uses the global clock for the WCET assumption. We use the local clock to simplify the
integration of the assumption in our formal model. Indeed, both result in identical constraints, as shown in this section.
5We can simulate multiple messages by exploiting synchrony; by accumulating messages locally and sending one aggregate
message at the end. Considering the headers of UDP and PALSware, we allow a maximum of 65498 bytes for a message.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:22 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

summarizes the four layers. Each row in the table shows the name of the layer, lower- and upper-
level models, simulation technique used (which we discuss in §5), assumptions needed for the
simulation proof, key properties verified for the proof of the layer, and the advantages of the
abstraction that helps the verification of higher layers.

Table 1. Summary of the incremental abstraction
Name Abstraction Simulation Required Assumptions Proven Properties Advantages

Ref. 4 Asynch to Synch Global Job movable within a period Elimination of
nondeterminism in time

Ref. 3 Network + AbsPALS
to Asynch Global Reliable network assumption,

Correct system config
No interference by messages,
All deliveries done in time

Abstract and
deterministic network

Ref. 2 OS + PALS-Spec
to AbsPALS Node

WCET assumption,
Timer assumption,
Clock skew assumption

Periodic execution
No node-local clocks,
Simplified interaction
between App & network

Ref. 1 C to ITree Prog User’s proof obligation Absence of impl. bugs Abstract data & execution

Building on this result, we formally verify the active-standby system, by establishing program
simulation between the C implementation and specification of each task, and then linking this
proof with the middleware verification result.

Abstract Global Models. Here, we explain the two global system models: the asynchronous and
synchronous systems. The asynchronous model abstracts away the details of the OS and network
models. The synchronous model serves as the top-level specification of the system, eliminating
asynchrony caused by concurrent executions. The refinement between these two models (Ref. 4)
addresses the asynchrony resulting from concurrent execution (which will be discussed later).

The two systemmodels are parametrized by a PALSware application specification, which includes
the period length 𝑇 , the number of nodes 𝑁 , and tasks specifications for each node represented
as untimed operational semantics. The transition steps of the 𝑖’th task are described in the form
𝑖𝑛𝑏 ⊢ 𝑠𝑖 𝑒−→ 𝑠′𝑖 , where 𝑖𝑛𝑏 is the inbox storing incoming messages from the previous period, and 𝑒 is
either an observable event or a message transmission to another task.
the asynchronous system model is constructed from a given application as follows. A system

state 𝜎a = (𝑡a, [(𝑠a,0, 𝑖𝑛𝑏c,0, 𝑖𝑛𝑏n,0), · · · , (𝑠a,𝑁−1, 𝑖𝑛𝑏c,𝑁−1, 𝑖𝑛𝑏n,𝑁−1)]) consists of the global time and
𝑁 asynchronous node states, where each contains a task state , an inbox for the current period,
and another inbox for the next period. This model simulates the exact timings of the concrete
model; while 𝑘𝑇 − 𝜀 < 𝑡a < (𝑘 + 1)𝑇 − 𝜀 − 𝜇 for some 𝑘 , every step of the system model executes
each task state. Specifically, a task state may take a step (𝑠a,𝑖 , 𝑖𝑛𝑏c,𝑖 , 𝑖𝑛𝑏n,𝑖) 𝑒−→ (𝑠′a,𝑖 , 𝑖𝑛𝑏c,𝑖 , 𝑖𝑛𝑏′n,𝑖) if
𝑖𝑛𝑏c,𝑖 ⊢ 𝑠a,𝑖 𝑒−→*𝑠′a,𝑖 , and 𝑖𝑛𝑏

′
n,𝑖 is the updated inbox by accepting new incoming messages from other

tasks. After 𝑡a reaches (𝑘 + 1)𝑇 − 𝜀 − 𝜇, the node states stop changing until 𝑡a = (𝑘 + 1)𝑇 − 𝜀, at
which each node transitions to (𝑠a,𝑖 , 𝑖𝑛𝑏c,𝑖 , 𝑖𝑛𝑏n,𝑖) 𝜏−→ (𝑠a,𝑖 , 𝑖𝑛𝑏n,𝑖 , []) for the next period (𝑘 + 1)𝑇 .

The synchronous system model, on the other hand, executes each task synchronously for each
period. In a system state 𝜎s = (𝑡s, [(𝑠s,0, 𝑖𝑛𝑏s,0), · · · , (𝑠s,𝑁−1, 𝑖𝑛𝑏s,𝑁−1)], each node state contains a
task state and the inbox for the next period.While 𝑡s ≠ 𝑘𝑇 for any𝑘 , the state does not change.When
𝑡s = 𝑘𝑇 for some 𝑘 , each task takes a big-step transition, 𝑖𝑛𝑏s,𝑖 ⊢ 𝑠s,𝑖 ⇓𝑡𝑟 𝑖 𝑠′s,𝑖

def
= 𝑖𝑛𝑏s,𝑖 ⊢ 𝑠s,𝑖 𝑡𝑟 𝑖−−→*𝑠′s,𝑖 .

Then, all outgoing messages from all tasks are gathered to create the new inboxes for each node.

Handling Distributed Concurrency. Here, we present our approach to handling concurrency
and eliminating asynchrony during the refinement proof between the two models described above.
This is achieved by desiginig global and local invariants that relate two system states from each
side and proving their preservation.

We begin by relating two states from each system that are ready to begin a new period. Consider
an asynchronous system state 𝜎a† at 𝑡a = 𝑘𝑇 − 𝜀 + 1, where each node is initialized to (𝑠†a,𝑖 , 𝑖𝑛𝑏

†
c,𝑖 , [])

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:23

to start the new period 𝑘𝑇 . This state can be related to a synchronous system state 𝜎s at 𝑡s = 𝑘𝑇

whose 𝑖’th node state is (𝑠s,𝑖 , 𝑖𝑛𝑏s,𝑖) = (𝑠†a,𝑖 , 𝑖𝑛𝑏
†
c,𝑖).

Fig. 9. Global invariant

Generalizing this relation, we design a global
invariant 𝐼glob that matches the state 𝜎s and an
asynchronous state 𝜎a after taking several steps
from 𝜎a

† until 𝑡a ∈ (𝑘𝑇 − 𝜀, (𝑘 + 1)𝑇 − 𝜀], as
illustrated in Fig. 9. Let ®𝑡𝑟 be the trace generated
from those steps and (𝑠a,𝑖 , 𝑖𝑛𝑏c,𝑖 , 𝑖𝑛𝑏n,𝑖) be the 𝑖’th
node states of 𝜎a. Then, for each node 𝑖 , 𝑖𝑛𝑏c,𝑖 ⊢
𝑠
†
a,𝑖

®𝑡𝑟 [𝑖]
−−−→*𝑠a,𝑖 holds where 𝑖𝑛𝑏c,𝑖 = 𝑖𝑛𝑏

†
c,𝑖 = 𝑖𝑛𝑏s,𝑖

and 𝑠
†
a,𝑖 = 𝑠s,𝑖 . Also, 𝑖𝑛𝑏n,𝑖 contains the inbound

messages generated in ®𝑡𝑟 , which we may denote as 𝑖𝑛𝑏n,𝑖 = gather_msgs(®𝑡𝑟, 𝑖). Thus, the following
invariant 𝐼glob holds:

𝐼loc (®𝑡𝑟, 𝑖, (𝑠s,𝑖 , 𝑖𝑛𝑏s,𝑖), (𝑠a,𝑖 , 𝑖𝑛𝑏c,𝑖 , 𝑖𝑛𝑏n,𝑖))
def
= 𝑖𝑛𝑏c,𝑖 ⊢ 𝑠s,𝑖

®𝑡𝑟 [𝑖]
−−−−→*𝑠a,𝑖 ∧ 𝑖𝑛𝑏s,𝑖 = 𝑖𝑛𝑏c,𝑖 ∧ 𝑖𝑛𝑏n,𝑖 = gather_msgs(®𝑡𝑟, 𝑖)

𝐼glob (®𝑡𝑟, (𝑡s, ®𝑠𝑡 s), (𝑡a, ®𝑠𝑡a))
def
= (∃𝑘. 𝑡s = 𝑘𝑇 ∧ 𝑘𝑇 − 𝜀 < 𝑡a ≤ (𝑘 + 1)𝑇 − 𝜀) ∧

∧
𝑖<𝑁

𝐼loc (®𝑡𝑟, 𝑖, ®𝑠𝑡 s [𝑖], ®𝑠𝑡a [𝑖])

The next step is to show that 𝐼glob implies global simulation, i.e., ∀®𝑡𝑟, 𝜎s, 𝜎a.𝐼glob (®𝑡𝑟, 𝜎s, 𝜎a) ⇒
𝜎s≾∼ ®𝑡𝑟𝜎a, using a coinductive reasoning. A high-level proof is as follows:

Proof. For ®𝑡𝑟, 𝜎s, 𝜎a that satisfy 𝐼glob (®𝑡𝑟, 𝜎s, 𝜎a), we need to show 𝜎s≾∼ ®𝑡𝑟𝜎a. From 𝐼glob, we can
denote 𝜎s = (𝑘𝑇, ®𝑠𝑡 s) and 𝜎a = (𝑡a, ®𝑠𝑡a) where 𝑘𝑇 − 𝜀 < 𝑡a ≤ (𝑘 + 1)𝑇 − 𝜀. We consider two cases:

(1) When 𝑡a < (𝑘 + 1)𝑇 − 𝜀: For any step 𝜎a
®𝑡𝑒a−−→ 𝜎 ′a, 𝐼glob (®𝑡𝑟

−→++ ®𝑡𝑒a, 𝜎s, 𝜎 ′a) holds. Therefore, we can
apply the coinductive hypothesis to prove part (𝑖𝑖) of Equation (4).

(2) When 𝑡a = (𝑘 + 1)𝑇 − 𝜀: The next step, say 𝜎a ®𝜏−→ 𝜎
†
a
′
, initializes the asynchronous state for

the next period. We now consider part (𝑖𝑖𝑖) of Equation (4). From 𝐼glob, we can construct the
first step 𝜎s

®𝑡𝑟−→ 𝜎s
† where all tasks run their jobs synchronously. Following this, there exists

an execution 𝜎s
† 𝜏−→*𝜎 ′s until 𝑡 ′s = (𝑘 + 1)𝑇 , during which no node states change. Finally, we

need to show 𝜎 ′s≾∼[]𝜎
†
a
′
. We can apply the coinductive hypothesis with 𝐼glob ([], 𝜎 ′s, 𝜎†a

′) which
trivially holds.

□

Finally, we verify that the initial states satisfy 𝐼glob ([], 𝜎s,init, 𝜎a,init), which implies the global
simulation between the two systems.

Applying Different Event Classifications. By instantiating the event classification C with
different functions, we can impose different assumptions on the system. The top-level global
specification is an ideally synchronized abstract system that may randomly drop an incoming
message𝑚 of a task, with generating a specific kind of network events LateDeliv(𝑖𝑝dst,𝑚). In
the refinement process, we treat LateDeliv(𝑖𝑝dst,𝑚) as an observable event, so we can instantiate
C = C1 such that C1 (LateDeliv(𝑖𝑝dst,𝑚)) = Obs for all𝑚, implying that the PALSware implemen-
tation works as the model described in PSync [Drăgoi et al. 2016] under the network without the
network delay bound assumption. Then, we can construct C2 ↩→ C1 (Definition 3.2) such that
C2 (LateDeliv(𝑖𝑝dst,𝑚)) = NB and C2 (𝑒) = C1 (𝑒) for other events, and Theorem 3.3 implies that
the PALSware implementation works as the deterministic synchronous model without message
drops under the reliable network assumption of the original PALSware paper.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:24 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

9 Evaluation

Table 2. Development

Components Def. Proof
VeriRT
Library 2099 2106
Models 2966 2464
ProofTech 1866 3610
CompCertRT 3644 6804

ClockSync
Impl (C) 313
ImplVerif 1050 3526
Spec 1763 3004
Refinement 2274 6597

PALSware
Impl (C) 327
ImplVerif 2239 5913
Spec 1627 1303
Refinement 2503 8861
Active-Standby
Impl (C) 352
ImplVerif 1775 4718

We summarize the line count information of our development
in Table 2. It includes the framework and two case studies:
the clock synchronization and and PALSware. For Coq files,
we used the coqwc tool, which separately counts the lines for
specification and for proof. For C files, we used the cloc tool.
Both tools exclude empty lines and comments.
VeriRT is composed of four main parts: general Coq li-

braries, formal models and their properties, proof techniques
with soundness proofs, and CompCertRT. Library contains def-
initions and utility lemmas for standard Coq definitions (e.g.,
option, list, and numbers), and declares standard axioms used
in our development. Models corresponds to the development
in §3 and §4, and ProofTech is related to §5. CompCertRT cor-
responds to §6, with a significant portion copied and adapted
from CompCertM for proving §6.2. It also includes utility lem-
mas and tactics for verifying concrete C programs.

The results of the case studies are structured as follows. The
ImplVerif rows represent the program-local abstractions of C
programs, which is not extensively engineered in this work.
We believe we could significantly reduce the proof efforts
by employing state-of-the-art simulation techniques such as
CCR [Song et al. 2023]. This method offers the full power of separation logic based on resource alge-
bras, combined with inductive-coinductive simulation techniques. The Spec rows include abstract
specifications and their verified properties. For ClockSync, concurrent reasoning was performed
at this level (see §7.2). The Refinement rows include the application of our proof techniques for
abstraction, performing combined reasoning about computational and timing behaviors. Subtle
behaviors in our concrete OS and network models are eliminated at this level. In PALSware, we
handled concurrency during the refinement proof (see §8.2).

10 Related Work
Our work is built on the intersection of real-time system verification and distributed system
verification, and we compare ours with significant related work from each field.

Verification on Real-Time Systems. There have been various verification tools and method-
ologies focusing on abstract designs of real-time systems. Uppaal [Bengtsson et al. 1996] is a
model-checking tool for system designs expressed as timed automata. The time Petri net [Merlin
and Farber 1976] is proposed as a model of distributed systems with execution time constraints,
which is extended in various ways in verifying real-time systems [Bucci et al. 2003; Ding et al.
2013]. The Real-Time Maude Tool [Ölveczky and Meseguer 2007] supports formal specification
and verification of real-time system models expressed as rewriting rules, on which various system
designs are verified [Meseguer and Ölveczky 2012; Ölveczky and Caccamo 2006; Ölveczky and
Thorvaldsen 2009], including the PALS architecture. While the abovementioned approaches have
successfully verified real-time system designs, they do not extend toward verifying code-level
implementations, which we aim for.

Verification Framework for Distributed Systems. Verdi [Wilcox et al. 2015; Woos et al. 2016] is
a framework designed for the development of verified distributed systems across multiple network

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:25

semantics. In terms of modeling, our network model can express Verdi’s models by manipulating the
network parameters. However, we take different verification approaches to dealing with multiple
network semantics. Verdi offers automatic transformations of systems by adding “handler” code
for abnormal network behaviors. Our framework does not provide such transformations, although
such things can potentially be verified in VeriRT, using our event classification facility.

Ironfleet [Hawblitzel et al. 2015] is another framework built on Dafny [Leino 2010], which offers
a centralized top-level model similar to ours. They support TLA-style refinement, which supports
liveness proofs. In addition, by leveraging Dafny, they support semi-automated proofs using SMT
solvers. While they offer a practical formal verification tool for distributed systems, their underlying
formal foundation is not as rigorous as ours, especially when it comes to the infrastructure models
(e.g., network and local clocks) and handling timed behaviors.

A notable advantage of our framework over the aforementioned ones is our support for verifying
C-level systems. The formal result ensures correctness down to the assembly level, whereas the
others support systems with representations at a higher level.

There are some studies focusing on the composition of system components, such as Disel [Sergey
et al. 2017]. They support modular abstraction (program-to-protocol) and linking multiple protocols,
which improves the reusability of formal verification results of distributed system components. In
terms of compositionality, we inherit the advantages of CompCertM, which offers high flexibility
in program composition. In the PALSware system, we leverage this feature to independently verify
the middleware and application components and then integrate the results afterwards. Also, we
support the vertical composition of proofs as we presented in this paper. However, horizontal
compositions of multiple protocols are not addressed in this work.
Some frameworks focus on specific types of distributed systems. Chapar [Lesani et al. 2016] is

a framework for verifying causally consistent key-value stores and their clients. The studies on
atomic distributed objects [Honoré et al. 2021, 2022] aim to verify various consensus protocols with
a unified abstract model. These studies propose abstract models for specific domains of systems,
while we focus on general systems involving real-time aspects.

Synchronization in Distributed System Implementation and Verification. PSync [Drăgoi
et al. 2016] suggests a programming model for distributed systems with a fault model that describes
the system as synchronous inwhich onlymessage drops occur, presenting observational equivalence
to the asynchronous system. While the original concept of PALSware aims to support safety-critical
systems under the assumption of a highly reliable infrastructure, we have implemented our version
of PALSware to function as PSync with network failures, and prove that this implementation indeed
adheres to the original specification of PALSware when the network is reliable.
Transforming an asynchronous system to a synchronous system using the reduction tech-

nique [Kragl et al. 2020; Lipton 1975; v. Gleissenthall et al. 2019], i.e., reordering operations without
altering observable behaviors to construct a synchronous equivalent, significantly reduces verifi-
cation effort, making model checking a tractable solution. Our framework shares the same spirit:
to abstract unnecessary race conditions away to improve the efficiency of verification. The main
difference is that those studies rely on logical synchronization points, while our work involves
reasoning on timed behaviors and time constraints.

Formal Timing Analysis on OS and Hardware. Several works have focused on formal timing
analysis at both OS and hardware levels. For schedulability and response time analysis on the OS
level, works such as [Cerqueira et al. 2016; Maida et al. 2022] provide formal frameworks, though
their WCET definitions differ from ours; they consider the execution time of tasks in isolation, while
our concept captures the actual time consumed between system calls in a task while other tasks are
present. For hardware-level timing verification, researchers have developed cycle-accurate formal

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

61:26 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

models [Hu and Chang 2001; Schwarz et al. 2017] that could potentially be integrated with our
framework. Such integration would enable end-to-end formal timing verification from high-level
system properties down to hardware behavior.

11 Conclusion
In this paper, we present VeriRT, a formal verification framework with a novel approach to handling
timing assumptions in formal refinement proofs. This approach offers a robust concept of timing
assumptions that are independent of execution code. We achieve this by using the No Behavior
concept, which reduces all timing assumptions to WCET conditions between system calls for the
target assembly. This approach allows us to easily extend CompCert’s existing untimed semantics
to timed semantics by defining a simple wrapper. Consequently, we can lift the existing correctness
proof to a timed semantics setting by simply proving a meta-level lemma.
Nevertheless, our current framework has a limitation: it does not provide a formal verification

method for the generated WCET conditions on the target assembly. The current validation of these
conditions relies on comprehensive whole-system testing with reasonable deadline margins.

We envision integrating formal schedulability and response time analysis to strengthen WCET
condition validation. Our framework provides a solid foundation for future research in time-aware
formal verification, particularly in safety-critical systems where timing guarantees are essential.

Acknowledgments
This work was primarily supported by Samsung Research Funding Center of Samsung Electronics
under Project Number SRFC-IT2102-03, and partially supported by the National Science Foundation
under Grant No. 2019285. Chung-Kil Hur is the corresponding author. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References
2020. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems.

IEEE Std 1588-2019 (Revision of IEEE Std 1588-2008) (2020), 1–499. https://doi.org/10.1109/IEEESTD.2020.9120376
Soheil Abbasloo and H Jonathan Chao. 2020. SharpEdge: An asynchronous and core-agnostic solution to guarantee

bounded-delays. CCF Transactions on Networking 3, 1 (2020), 35–50. https://doi.org/10.1007/s42045-020-00032-z
Abdullah Al-Nayeem, Cheolgi Kim, Woochul Kang, Po-Liang Wu, and Lui Sha. 2013. Middleware design for Physically-

Asynchronous Logically-Synchronous (PALS) systems. In 2013 Proceedings of the International Conference on Embedded
Software (EMSOFT). 1–10. https://doi.org/10.1109/EMSOFT.2013.6658583

Abdullah Al-Nayeem, Mu Sun, Xiaokang Qiu, Lui Sha, Steven P. Miller, and Darren D. Cofer. 2009. A Formal Architecture
Pattern for Real-Time Distributed Systems. In 2009 30th IEEE Real-Time Systems Symposium. 161–170. https://doi.org/10.
1109/RTSS.2009.50

Rajeev Alur and David L. Dill. 1994. A theory of timed automata. Theoretical Computer Science 126, 2 (1994), 183–235.
https://doi.org/10.1016/0304-3975(94)90010-8

Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. 1996. UPPAAL — a tool suite for automatic
verification of real-time systems. In Hybrid Systems III, Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 232–243.

G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario. 2003. Modeling flexible real time systems with preemptive time Petri nets. In
15th Euromicro Conference on Real-Time Systems, 2003. Proceedings. 279–286. https://doi.org/10.1109/EMRTS.2003.1212753

Felipe Cerqueira, Felix Stutz, and Björn B. Brandenburg. 2016. PROSA: A Case for Readable Mechanized Schedulability
Analysis. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS). 273–284. https://doi.org/10.1109/ECRTS.2016.
28

Baiyu Chen, Zhengyu Yang, Siyu Huang, Xianzhi Du, Zhiwei Cui, Janki Bhimani, Xin Xie, and Ningfang Mi. 2017. Cyber-
physical system enabled nearby traffic flowmodelling for autonomous vehicles. In 2017 IEEE 36th International Performance
Computing and Communications Conference (IPCCC). 1–6. https://doi.org/10.1109/PCCC.2017.8280498

C.-T. Chou, I. Cidon, I.S. Gopal, and S. Zaks. 1990. Synchronizing asynchronous bounded delay networks. IEEE Transactions
on Communications 38, 2 (1990), 144–147. https://doi.org/10.1109/26.47845

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

https://doi.org/10.1109/IEEESTD.2020.9120376
https://doi.org/10.1007/s42045-020-00032-z
https://doi.org/10.1109/EMSOFT.2013.6658583
https://doi.org/10.1109/RTSS.2009.50
https://doi.org/10.1109/RTSS.2009.50
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/EMRTS.2003.1212753
https://doi.org/10.1109/ECRTS.2016.28
https://doi.org/10.1109/ECRTS.2016.28
https://doi.org/10.1109/PCCC.2017.8280498
https://doi.org/10.1109/26.47845

VeriRT: An End-to-End Verification Framework for Real-Time Distributed Systems 61:27

Michelle Cotton and Leo Vegoda. 2010. Special Use IPv4 Addresses. RFC 5735. https://doi.org/10.17487/RFC5735
Flaviu Cristian. 1989. Probabilistic clock synchronization. Distributed computing 3, 3 (1989), 146–158. https://doi.org/10.

1007/BF01784024
Zhijun Ding, Changjun Jiang, and Mengchu Zhou. 2013. Design, Analysis and Verification of Real-Time Systems Based on

Time Petri Net Refinement. ACM Trans. Embed. Comput. Syst. 12, 1, Article 4 (Jan. 2013), 18 pages. https://doi.org/10.
1145/2406336.2406340

Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: A Partially Synchronous Language for Fault-
Tolerant Distributed Algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY,
USA, 400–415. https://doi.org/10.1145/2837614.2837650

Hemangi Laxman Gawand, A.K. Bhattacharjee, and Kallol Roy. 2017. Securing a cyber physical system in nuclear power
plants using least square approximation and computational geometric approach. Nuclear Engineering and Technology 49,
3 (2017), 484–494. https://doi.org/10.1016/j.net.2016.10.009

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian
Zill. 2015. IronFleet: proving practical distributed systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 1–17.
https://doi.org/10.1145/2815400.2815428

Wolf Honoré, Jieung Kim, Ji-Yong Shin, and Zhong Shao. 2021. Much ADO about failures: a fault-aware model for
compositional verification of strongly consistent distributed systems. Proc. ACM Program. Lang. 5, OOPSLA, Article 97
(Oct. 2021), 31 pages. https://doi.org/10.1145/3485474

Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2022. Adore: Atomic Distributed Objects with Certified Recon-
figuration. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 379–394.
https://doi.org/10.1145/3519939.3523444

Alan J. Hu and Felix Sheng-Ho Chang. 2001. Fast Specification of Cycle-Accurate Processor Models . In Proceedings
2001 International Conference on Computer Design. ICCD 2001. IEEE Computer Society, Los Alamitos, CA, USA, 0488.
https://doi.org/10.1109/ICCD.2001.955072

Aeronautical Radio Inc. 2005. ARINC Specification 664: Aircraft Data Network, Part 7 - Avionics Full Duplex Switched
Ethernet (AFDX) Network.

Siddhartha Kumar Khaitan and James D. McCalley. 2015. Design Techniques and Applications of Cyberphysical Systems: A
Survey. IEEE Systems Journal 9, 2 (2015), 350–365. https://doi.org/10.1109/JSYST.2014.2322503

Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur. 2024. Artifact for POPL 2025 - VeriRT: An End-To-End
Verification Framework for Real-Time Distributed Systems. https://doi.org/10.5281/zenodo.13937956

Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz Qadeer. 2020. Inductive
Sequentialization of Asynchronous Programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 227–242. https://doi.org/10.1145/3385412.3385980

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Logic for Programming,
Artificial Intelligence, and Reasoning, Edmund M. Clarke and Andrei Voronkov (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 348–370. https://doi.org/10.1007/978-3-642-17511-4_20

Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun. ACM 52, 7 (July 2009), 107–115. https:
//doi.org/10.1145/1538788.1538814

Xavier Leroy. 2009b. A formally verified compiler back-end. Journal of Automated Reasoning 43, 4 (2009), 363–446.
https://doi.org/10.1007/s10817-009-9155-4

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: Certified Causally Consistent Distributed Key-Value
Stores. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY, USA, 357370. https:
//doi.org/10.1145/2837614.2837622

Thomas Leveque, Etienne Borde, Amine Marref, and Jan Carlson. 2011. Hierarchical Composition of Parametric WCET in a
Component Based Approach. In 2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing. 261–268. https://doi.org/10.1109/ISORC.2011.38

Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (dec 1975),
717–721. https://doi.org/10.1145/361227.361234

Marco Maida, Sergey Bozhko, and Björn B. Brandenburg. 2022. Foundational Response-Time Analysis as Explainable
Evidence of Timeliness. In 34th Euromicro Conference on Real-Time Systems (ECRTS 2022) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 231), Martina Maggio (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 19:1–19:25. https://doi.org/10.4230/LIPIcs.ECRTS.2022.19

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

https://doi.org/10.17487/RFC5735
https://doi.org/10.1007/BF01784024
https://doi.org/10.1007/BF01784024
https://doi.org/10.1145/2406336.2406340
https://doi.org/10.1145/2406336.2406340
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1016/j.net.2016.10.009
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3485474
https://doi.org/10.1145/3519939.3523444
https://doi.org/10.1109/ICCD.2001.955072
https://doi.org/10.1109/JSYST.2014.2322503
https://doi.org/10.5281/zenodo.13937956
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1109/ISORC.2011.38
https://doi.org/10.1145/361227.361234
https://doi.org/10.4230/LIPIcs.ECRTS.2022.19

61:28 Yoonseung Kim, Sung-Hwan Lee, Yonghyun Kim, and Chung-Kil Hur

Aminé Marref. 2010. Compositional timing analysis. In 2010 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation. 144–151. https://doi.org/10.1109/ICSAMOS.2010.5642071

C. Maxim, A. Gogonel, I. Asavoae, M. Asavoae, and L. Cucu-Grosjean. 2017. Reproducibility and Representativity: Mandatory
Properties for the Compositionality of Measurement-Based WCET Estimation Approaches. SIGBED Rev. 14, 3 (nov 2017),
24–31. https://doi.org/10.1145/3166227.3166230

P. Merlin and D. Farber. 1976. Recoverability of Communication Protocols - Implications of a Theoretical Study. IEEE
Transactions on Communications 24, 9 (1976), 1036–1043. https://doi.org/10.1109/TCOM.1976.1093424

José Meseguer and Peter Csaba Ölveczky. 2012. Formalization and correctness of the PALS architectural pattern for
distributed real-time systems. Theoretical Computer Science 451 (2012), 1–37. https://doi.org/10.1016/j.tcs.2012.05.040

D. Mills. 1992. RFC1305: Network Time Protocol (Version 3) Specification, Implementation. https://doi.org/10.17487/RFC1305
Peter Csaba Ölveczky and Marco Caccamo. 2006. Formal simulation and analysis of the CASH scheduling algorithm in

real-time maude. In Proceedings of the 9th International Conference on Fundamental Approaches to Software Engineering
(Vienna, Austria) (FASE’06). Springer-Verlag, Berlin, Heidelberg, 357–372. https://doi.org/10.1007/11693017_26

Peter Csaba Ölveczky and José Meseguer. 2007. Semantics and pragmatics of Real-Time Maude. Higher Order Symbol.
Comput. 20, 1–2 (June 2007), 161–196. https://doi.org/10.1007/s10990-007-9001-5

Peter Csaba Ölveczky and Stian Thorvaldsen. 2009. Formal modeling, performance estimation, and model checking of
wireless sensor network algorithms in Real-Time Maude. Theor. Comput. Sci. 410, 2–3 (Feb. 2009), 254–280. https:
//doi.org/10.1016/j.tcs.2008.09.022

Krishna Sampigethaya and Radha Poovendran. 2012. Cyber-physical system framework for future aircraft and air traffic
control. In 2012 IEEE Aerospace Conference. 1–9. https://doi.org/10.1109/AERO.2012.6187151

Michael Schwarz, Carlos Villarraga, Dominik Stoffel, and Wolfgang Kunz. 2017. Cycle-accurate software modeling for RTL
verification of embedded systems. In 2017 IEEE 20th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS). 103–108. https://doi.org/10.1109/DDECS.2017.7934571

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming and proving with distributed protocols. Proc. ACM
Program. Lang. 2, POPL, Article 28 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158116

Lui Sha, Abdullah Al-Nayeem, Mu Sun, Jose Meseguer, and Peter C Olveczky. 2009. PALS: Physically asynchronous logically
synchronous systems. Technical Report.

Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. 2011. A survey of Cyber-Physical Systems. In 2011 International Conference
on Wireless Communications and Signal Processing (WCSP). 1–6. https://doi.org/10.1109/WCSP.2011.6096958

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2019. CompCertM: CompCert
with C-assembly linking and lightweight modular verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (Dec. 2019),
31 pages. https://doi.org/10.1145/3371091

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional Contextual
Refinement. Proc. ACM Program. Lang. 7, POPL, Article 39 (Jan. 2023), 31 pages. https://doi.org/10.1145/3571232

Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander Bakst, Deian Stefan, and Ranjit Jhala. 2019. Pretend Synchrony:
Synchronous Verification of Asynchronous Distributed Programs. Proc. ACM Program. Lang. 3, POPL, Article 59 (jan
2019), 30 pages. https://doi.org/10.1145/3290372

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015.
Verdi: a framework for implementing and formally verifying distributed systems. SIGPLAN Not. 50, 6 (June 2015), 357–368.
https://doi.org/10.1145/2813885.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas Anderson. 2016. Planning for
change in a formal verification of the raft consensus protocol. In Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs (St. Petersburg, FL, USA) (CPP 2016). Association for Computing Machinery, New York, NY,
USA, 154–165. https://doi.org/10.1145/2854065.2854081

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 61. Publication date: January 2025.

https://doi.org/10.1109/ICSAMOS.2010.5642071
https://doi.org/10.1145/3166227.3166230
https://doi.org/10.1109/TCOM.1976.1093424
https://doi.org/10.1016/j.tcs.2012.05.040
https://doi.org/10.17487/RFC1305
https://doi.org/10.1007/11693017_26
https://doi.org/10.1007/s10990-007-9001-5
https://doi.org/10.1016/j.tcs.2008.09.022
https://doi.org/10.1016/j.tcs.2008.09.022
https://doi.org/10.1109/AERO.2012.6187151
https://doi.org/10.1109/DDECS.2017.7934571
https://doi.org/10.1145/3158116
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3571232
https://doi.org/10.1145/3290372
https://doi.org/10.1145/2813885.2737958
https://doi.org/10.1145/2854065.2854081

	Abstract
	1 Introduction
	2 Overview
	2.1 Modeling Timed Behaviors of Programs
	2.2 Reasoning about Timed Behaviors
	2.3 Structure of the Framework

	3 Timed Behaviors of Real-Time Distributed Systems
	3.1 Distributed System Model
	3.2 Timed Observable Behaviors and Refinement

	4 Concrete Formal Distributed System Model
	4.1 OS Model
	4.2 Concrete Node Model
	4.3 Network Model

	5 Proof Techniques
	5.1 Program-Local Simulation
	5.2 Node-Local Simulation
	5.3 Global Simulation

	6 Lifting CompCert's Proof
	6.1 Lifting of Mixed Simulation
	6.2 Syntactic Linking of Assembly Programs

	7 Case Study 1: Clock Synchronization
	7.1 Analysis on Clock Synchronization
	7.2 Verification

	8 Case Study 2: PALSware
	8.1 Correctness of Synchronization
	8.2 Verification

	9 Evaluation
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

